Find the plane through the point [ − 2 , − 3 , − 2 ]
and containing the line
.
14 − 18x + 25z = 0 7 − 18x + 25z = 0 9 − 18x − y + 24z = 0 3 − 18x − y + 24z = 0
Find the distance between the planes 8 − 2y + 2z = 0 and −12 − 2y + 2z = 0.
Let
.
Suppose that
,
,
, and
.
Then find
.
[ 7 , 11 , 3 ] [ 4 , 9 , 4 ] [ 7 , 11 , 2 ] [ 4 , 9 , 5 ]
Find the line through the points [ − 2 , 2 , 0 ] and [ − 3 , 1 , − 1 ] .
[ x , y , z ] = [ − 2 − t , 2 − t , − t ] [ x , y , z ] = [ − 2 − t , 2 , − t ] [ x , y , z ] = [ − 1 − t , 2 , 1 − t ] [ x , y , z ] = [ − 1 − t , 2 − t , 1 − t ]
Let
.
Suppose that
,
,
, and
.
Then find
.
5 6 3 6
Find the line through the point [ 3 , − 3 , − 4 ] and perpendicular to the plane 1 − 3y + 5z = 0.
[ x , y , z ] = [ 3 , − 3 − 3t , − 4 + 5t ] [ x , y , z ] = [ 4 , − 3 − 2t , − 3 + 5t ] [ x , y , z ] = [ 4 , − 3 − 3t , − 3 + 5t ] [ x , y , z ] = [ 3 , − 3 − 2t , − 4 + 5t ]
Find the plane through the points [ − 1 , 3 , 2 ], [ − 3 , 3 , 1 ], and [ 1 , 2 , 3 ].
−5 − x + 2z = 0 −12 − x + y + 3z = 0 −6 − x + 2z = 0 −10 − x + y + 3z = 0
Find the line through the point [ − 3 , 1 , − 3 ] and parallel to the vector [ 0 , 0 , 1 ].
[ x , y , z ] = [ − 2 , 1 + t , − 3 + t ] [ x , y , z ] = [ − 3 , 1 , − 3 + t ] [ x , y , z ] = [ − 2 , 1 , − 3 + t ] [ x , y , z ] = [ − 3 , 1 + t , − 3 + t ]
Find the distance between the point [ − 4 , 2 , − 2 ] and the planes 11 − 2x − 3y − 4z = 0.
Find the plane through the point [ − 5 , 5 , − 4 ] and perpendicular to the vector [ 1 , 1 , − 2 ].
−9 + x + y − 2z = 0 −14 + x + 2y − 2z = 0 −8 + x + y − 2z = 0 −13 + x + 2y − 2z = 0