Let
.
Suppose that
,
,
, and
.
Then find
.
[ − 8 , − 7 , 3 ] [ − 10 , − 6 , 3 ] [ − 10 , − 6 , 2 ] [ − 8 , − 7 , 4 ]
Find the plane through the point [ − 3 , 3 , 0 ] and containing the line [ x , y , z ] = [ 2 − 3t , − 2 + t , 3t ].
−3 + 15x + 16y + 10z = 0 −28 + 15x + 16y + 10z = 0 −25 + 15x + 15y + 10z = 0 15x + 15y + 10z = 0
Find the tangent line to
at
.
[ x , y , z ] = [ 2 − 2t , 1 − 2t , − 1 + 3t ] [ x , y , z ] = [ 1 − 2t , 1 − 2t , − 1 + 3t ] [ x , y , z ] = [ 1 − 2t , 1 − t , − 1 + 4t ] [ x , y , z ] = [ 2 − 2t , 1 − t , − 1 + 4t ]
Find the distance between the planes −8 − x − 3z = 0 and 12 − x − 3z = 0.
Find the plane through the points [ − 1 , 1 , 3 ], [ − 3 , 3 , 5 ], and [ − 1 , 2 , 2 ].
3 − 4x − y − 2z = 0 4 − 4x − 2y − 2z = 0 8 − 4x − 2y − 2z = 0 7 − 4x − y − 2z = 0
Let
.
Suppose that
,
,
, and
.
Then find
.
3 4 5 6
Find the line through the point [ − 5 , 1 , 2 ] and perpendicular to the plane −4 − 2x − 5y − 4z = 0.
[ x , y , z ] = [ − 4 − 2t , 1 − 4t , 3 − 3t ] [ x , y , z ] = [ − 5 − 2t , 1 − 4t , 2 − 3t ] [ x , y , z ] = [ − 4 − 2t , 1 − 5t , 3 − 4t ] [ x , y , z ] = [ − 5 − 2t , 1 − 5t , 2 − 4t ]
Find the line through the points [ 3 , − 2 , − 3 ] and [ 1 , − 3 , 3 ] .
[ x , y , z ] = [ 4 − 2t , − 2 , − 2 + 7t ] [ x , y , z ] = [ 3 − 2t , − 2 , − 3 + 7t ] [ x , y , z ] = [ 4 − 2t , − 2 − t , − 2 + 6t ] [ x , y , z ] = [ 3 − 2t , − 2 − t , − 3 + 6t ]
Find the line through the point [ 1 , − 1 , − 2 ] and parallel to the vector [ 4 , − 3 , − 2 ].
[ x , y , z ] = [ 2 + 4t , − 1 − 2t , − 2 − t ]
[ x , y , z ] = [ 1 + 4t , − 1 − 2t , − 2 − t ]
Find the distance between the point [ − 4 , − 3 , 0 ] and the planes −17 + 4x − 3y − 4z = 0.