Generating... |                     | quiz02a_n21 |
Find the line through the point [ 1 , − 2 , 5 ] and perpendicular to the plane −x + 2y − 5z = 0.
[ x , y , z ] = [ 2 − t , − 2 + 3t , 6 − 4t ] [ x , y , z ] = [ 1 − t , − 2 + 2t , 5 − 5t ] [ x , y , z ] = [ 1 − t , − 2 + 3t , 5 − 4t ] [ x , y , z ] = [ 2 − t , − 2 + 2t , 6 − 5t ]
Let
.
Suppose that
,
,
, and
.
Then find
.
−12 −13 −12 −15
Find the plane through the point [ − 1 , − 1 , 3 ]
and containing the line
.
−32 + 16x + 16y + 16z = 0 −16 + 16x + 16y + 16z = 0 −18 + 16x + 17y + 17z = 0 −34 + 16x + 17y + 17z = 0
Find the plane through the point [ − 4 , − 4 , 2 ] and perpendicular to the vector [ 2 , − 4 , − 1 ].
−2 + 2x − 3y − z = 0 −6 + 2x − 4y − z = 0 −7 + 2x − 4y − z = 0 −3 + 2x − 3y − z = 0
Find the tangent line to
at
.
[ x , y , z ] = [ 1 + 2t , 1 + 4t , 1 + t ] [ x , y , z ] = [ 2 + 2t , 1 + 3t , 2 + t ] [ x , y , z ] = [ 1 + 2t , 1 + 3t , 1 + t ] [ x , y , z ] = [ 2 + 2t , 1 + 4t , 2 + t ]
Let
.
Suppose that
,
,
, and
.
Then find
.
[ − 10 , − 3 , 5 ] [ − 8 , − 3 , 4 ] [ − 9 , − 3 , 4 ] [ − 7 , − 3 , 3 ]
Find the line through the point [ − 3 , − 3 , − 1 ] and parallel to the vector [ 1 , − 2 , − 2 ].
[ x , y , z ] = [ − 2 + t , − 3 − t , − 1 − t ] [ x , y , z ] = [ − 2 + t , − 3 − 2t , − 1 − 2t ] [ x , y , z ] = [ − 3 + t , − 3 − 2t , − 1 − 2t ] [ x , y , z ] = [ − 3 + t , − 3 − t , − 1 − t ]
Find the distance between the planes 2x + 2y + 3z = 0 and 2 + 2x + 2y + 3z = 0.
Find the plane through the points [ − 3 , 1 , − 3 ], [ − 2 , 1 , − 1 ], and [ − 5 , 3 , − 1 ].
−1 − 4x − 5y + 2z = 0 3 − 4x − 5y + 2z = 0 −4x − 6y + 2z = 0 4 − 4x − 6y + 2z = 0
Find the distance between the point [ − 3 , 0 , 4 ] and the planes −9 − 3x − 4y + 4z = 0.