| Generating... |                     | quiz02a_n4 |
Find the line through the point [ 1 , 3 , 3 ] and parallel to the vector [ 1 , 4 , 2 ].
[ x , y , z ] = [ 1 + t , 3 + 5t , 3 + 3t ] [ x , y , z ] = [ 1 + t , 3 + 4t , 3 + 2t ] [ x , y , z ] = [ 2 + t , 3 + 4t , 4 + 2t ] [ x , y , z ] = [ 2 + t , 3 + 5t , 4 + 3t ]
Find the line of intersection of the planes 6 − 3y − z = 0 and 6 + 3x − 3y + 2z = 0 using the point [ − 3 , 1 , 3 ] of intersection.
[ x , y , z ] = [ − 3 + 3t , 1 − 3t , 3 + 2t ]
[ x , y , z ] = [ − 3 , 1 − 3t , 3 − t ]
[ x , y , z ] = [ − 3 − 9t , 1 − 3t , 3 + 9t ]
Find the plane through the points [ 2 , − 2 , 0 ], [ 4 , − 3 , 1 ], and [ 1 , − 1 , − 2 ].
4 + x + 3y + z = 0 3 + x + 4y + 2z = 0 6 + x + 4y + 2z = 0 2 + x + 3y + z = 0
Find the distance between the planes 10 − 3x + 3y − z = 0 and 6 − 3x + 3y − z = 0.
Find the distance between the point [ − 1 , 1 , 2 ] and the planes −10 − x − 3y − 3z = 0.
Find the line through the points [ − 1 , 2 , 1 ] and [ 3 , 3 , − 1 ] .
[ x , y , z ] = [ − 1 + 4t , 2 + 2t , 1 − t ] [ x , y , z ] = [ − 1 + 4t , 2 + t , 1 − 2t ] [ x , y , z ] = [ 4t , 2 + 2t , 1 − t ] [ x , y , z ] = [ 4t , 2 + t , 1 − 2t ]
Find the plane through the point [ − 3 , − 3 , 1 ]
and containing the line
.
−20 − 18x + 14y + 13z = 0 −23 − 18x + 15y + 14z = 0 −19 − 18x + 15y + 14z = 0 −25 − 18x + 14y + 13z = 0
Find the tangent line to
at
.
[ x , y , z ] = [ 2 + 4t , 1 + 2t , 2 + t ] [ x , y , z ] = [ 1 + 4t , 1 + 2t , 1 + t ] [ x , y , z ] = [ 1 + 4t , 1 + 3t , 1 + 2t ] [ x , y , z ] = [ 2 + 4t , 1 + 3t , 2 + 2t ]
Let
.
Suppose that
,
,
, and
.
Then find
.
15 14 16 17
Let
.
Suppose that
,
,
, and
.
Then find
.
[ 9 , − 15 , − 2 ] [ 5 , − 12 , − 2 ] [ 7 , − 15 , − 4 ] [ 7 , − 12 , 0 ]