Find the plane through the point [ 1 , − 2 , 5 ] and perpendicular to the vector [ − 1 , 2 , − 5 ].
36 − x + 2y − 5z = 0 32 − x + 3y − 4z = 0 30 − x + 2y − 5z = 0 27 − x + 3y − 4z = 0
Find the line through the points [ 0 , 0 , 2 ] and [ 1 , − 1 , 4 ] .
[ x , y , z ] = [ t , − t , 2 + 2t ] [ x , y , z ] = [ 1 + t , 0 , 2 + 3t ] [ x , y , z ] = [ t , 0 , 2 + 3t ] [ x , y , z ] = [ 1 + t , − t , 2 + 2t ]
Find the line through the point [ − 2 , − 3 , 2 ] and perpendicular to the plane −2 + 2y + 3z = 0.
[ x , y , z ] = [ − 1 , − 3 + 2t , 3 + 3t ] [ x , y , z ] = [ − 1 , − 3 + 3t , 3 + 3t ] [ x , y , z ] = [ − 2 , − 3 + 3t , 2 + 3t ] [ x , y , z ] = [ − 2 , − 3 + 2t , 2 + 3t ]
Find the line through the point [ − 3 , − 2 , 1 ] and parallel to the vector [ 1 , 2 , − 2 ].
[ x , y , z ] = [ − 2 + t , − 2 + 2t , 2 − 2t ] [ x , y , z ] = [ − 2 + t , − 2 + 3t , 2 − 2t ] [ x , y , z ] = [ − 3 + t , − 2 + 2t , 1 − 2t ] [ x , y , z ] = [ − 3 + t , − 2 + 3t , 1 − 2t ]
Let
.
Suppose that
,
,
, and
.
Then find
.
−8 −5 −6 −7
Find the plane through the points [ − 3 , 1 , − 1 ], [ − 2 , − 1 , 0 ], and [ − 3 , 0 , − 3 ].
12 + 5x + 2y − z = 0 7 + 5x + 2y − z = 0 12 + 5x + 3y = 0 7 + 5x + 3y = 0
Find the distance between the planes −8 − 3x − z = 0 and 5 − 3x − z = 0.
Let
.
Suppose that
,
,
, and
.
Then find
.
[ 9 , 1 , − 3 ] [ 6 , 2 , − 4 ] [ 7 , 3 , − 1 ] [ 4 , 4 , − 2 ]
Find the plane through the point [ − 3 , − 2 , − 2 ] and containing the line [ x , y , z ] = [ − t , − 2 + 3t , 2 − 4t ].
6 + 12x − 7y − 8z = 0 2 + 12x − 8y − 9z = 0 −6 + 12x − 7y − 8z = 0 −10 + 12x − 8y − 9z = 0
Find the line of intersection of the planes 7 + 2x + y + 3z = 0 and −4 + x − 2y + 2z = 0 using the point [ − 2 , − 3 , 0 ] of intersection.
[ x , y , z ] = [ − 2 + 2t , − 3 + t , 3t ] [ x , y , z ] = [ − 2 + 8t , − 3 , − 5t ] [ x , y , z ] = [ − 2 + 8t , − 3 − t , − 5t ] [ x , y , z ] = [ − 2 + t , − 3 − 2t , 2t ]