Generating... |                     | quiz02a_n19 |
Let
.
Suppose that
,
,
, and
.
Then find
.
1 0 −1 0
Let
.
Suppose that
,
,
, and
.
Then find
.
[ 3 , 8 , 11 ] [ 2 , 9 , 11 ] [ 2 , 9 , 10 ] [ 3 , 8 , 12 ]
Find the plane through the point [ − 4 , 1 , 1 ] and perpendicular to the vector [ − 3 , − 4 , − 4 ].
−4 − 3x − 4y − 4z = 0 −3x − 3y − 3z = 0 3 − 3x − 4y − 4z = 0 −6 − 3x − 3y − 3z = 0
Find the tangent line to
at
.
[ x , y , z ] = [ 1 + 3t , 1 + 2t , 1 + 2t ] [ x , y , z ] = [ 2 + 3t , 1 + 2t , 1 + 2t ] [ x , y , z ] = [ 1 + 3t , 1 + t , 1 + t ] [ x , y , z ] = [ 2 + 3t , 1 + t , 1 + t ]
Find the line of intersection of the planes −8 + 2y − z = 0 and −3 − x + 2y + z = 0 using the point [ 1 , 3 , − 2 ] of intersection.
[ x , y , z ] = [ 1 + 4t , 3 + 2t , − 2 + 2t ] [ x , y , z ] = [ 1 + 4t , 3 + t , − 2 + 2t ] [ x , y , z ] = [ 1 , 3 + 2t , − 2 − t ] [ x , y , z ] = [ 1 − t , 3 + 2t , − 2 + t ]
Find the distance between the point [ 4 , 0 , − 2 ] and the planes −7 + 2y − 3z = 0.
0
0
Find the distance between the planes −2 − y − 2z = 0 and 8 − y − 2z = 0.
3
4
Find the plane through the point [ 2 , − 3 , 0 ] and containing the line [ x , y , z ] = [ 2 − 5t , 3 − 2t , − 3 ].
−60 + 6x − 14y − 30z = 0 −54 + 6x − 14y − 30z = 0 −57 + 6x − 15y − 30z = 0 −63 + 6x − 15y − 30z = 0
Find the line through the points [ − 2 , 3 , 4 ] and [ − 3 , − 2 , 0 ] .
[ x , y , z ] = [ − 1 − t , 3 − 5t , 4 − 4t ] [ x , y , z ] = [ − 1 − t , 3 − 4t , 4 − 4t ] [ x , y , z ] = [ − 2 − t , 3 − 4t , 4 − 4t ] [ x , y , z ] = [ − 2 − t , 3 − 5t , 4 − 4t ]
Find the line through the point [ − 4 , 1 , − 5 ] and perpendicular to the plane −2 − 4x − 5y + z = 0.
[ x , y , z ] = [ − 4 − 4t , 1 − 5t , − 5 + t ]
[ x , y , z ] = [ − 3 − 4t , 1 − 5t , − 5 + t ]