1. Let $z = \frac{x}{x+y}$. Find the total differential $dz$.

    $\displaystyle \frac{y^2\,dx+x^2\,dy}{\left(x+y\right)^2}$ $\displaystyle -\frac{dx+dy}{\left(x+y\right)^2}$ $\displaystyle -\frac{-y\,dx+x\,dy}{\left(x+y\right)^2}$ $\displaystyle \frac{-y\,dx+x\,dy}{\left(x+y\right)^2}$

  2. Let $z = f(x,y)$ where $x = r\,\sin s$ and $y = r\,\cos s$ . Express $\dfrac{\partial z}{\partial r}$ in terms of $f_x$, $f_y$, $r$ and $s$.

    $f_x ( \cos s)
+ f_y ( \sin s)$ $f_x ( -r\,\sin s)
+ f_y ( r\,\cos s)$ $f_x ( r\,\cos s)
+ f_y ( -r\,\sin s)$ $f_x ( \sin s)
+ f_y ( \cos s)$

  3. Let $f(x,y) = \cos \left(3\,x+y\right)$. Find all the second partial derivatives.

    $f_{xx}(x,y) = -9\,\cos \left(3\,x+y\right)$; $f_{xy}(x,y) = -3\,\cos \left(3\,x+y\right)$; $f_{yy}(x,y) = -\cos \left(3\,x+y\right)$ $f_{xx}(x,y) = -\cos \left(3\,x+y\right)$; $f_{xy}(x,y) = -3\,\sin \left(3\,x+y\right)$; $f_{yy}(x,y) = -9\,\cos \left(3\,x+y\right)$ $f_{xx}(x,y) = -\sin \left(3\,x+y\right)$; $f_{xy}(x,y) = 3\,\cos \left(3\,x+y\right)$; $f_{yy}(x,y) = -9\,\sin \left(3\,x+y\right)$ $f_{xx}(x,y) = -9\,\sin \left(3\,x+y\right)$; $f_{xy}(x,y) = -3\,\sin \left(3\,x+y\right)$; $f_{yy}(x,y) = -\sin \left(3\,x+y\right)$

  4. Let $z = x\,\sin \left(x\,y\right)$. Find the total differential $dz$.

    $\displaystyle -y^2\,\sin \left(x\,y\right)\,dx+\left(\cos \left(x\,y\right)-x\,y
\,\sin \left(x\,y\right)\right)\,dy$ $\displaystyle \left(\cos \left(x\,y\right)-x\,y\,\sin \left(x\,y\right)\right)\,d
x-x^2\,\sin \left(x\,y\right)\,dy$ $\displaystyle y^2\,\cos \left(x\,y\right)\,dx+\left(x\,y\,\cos \left(x\,y\right)+
\sin \left(x\,y\right)\right)\,dy$ $\displaystyle \left(x\,y\,\cos \left(x\,y\right)+\sin \left(x\,y\right)\right)\,d
x+x^2\,\cos \left(x\,y\right)\,dy$

  5. Let $f(x,y) = x^{\frac{3}{2}}\,\sqrt{y}$. Find the tangent plane at $(x,y) = \left[ 1 , 4 \right] $.

    z = −11 + 3x + 4y $\displaystyle z=\frac{-8+12\,x+y}{4}$ z = −8 + 4x + 3y $\displaystyle z=\frac{-41+x+12\,y}{4}$

  6. Let $f(x,y) = -\frac{y}{x+y}$. Find the tangent plane at $(x,y) = \left[ 1 , 2 \right] $.

    $\displaystyle z=\frac{6-2\,x+y}{9}$ $\displaystyle z=-\frac{6-2\,x+y}{9}$ $\displaystyle z=-\frac{-9-x+2\,y}{9}$ $\displaystyle z=\frac{-9-x+2\,y}{9}$

  7. Let $f(x,y) = -\frac{x}{x-y}$. Find all the second partial derivatives.

    $f_{xx}(x,y) = \frac{2\,x}{\left(-x+y\right)^3}$; $f_{xy}(x,y) = \frac{y}{\left(-x+y\right)^2}$; $f_{yy}(x,y) = \frac{2\,y}{\left(-x+y\right)^3}$ $f_{xx}(x,y) = -\frac{2\,x}{\left(-x+y\right)^3}$; $f_{xy}(x,y) = -\frac{y}{\left(-x+y\right)^2}$; $f_{yy}(x,y) = -\frac{2\,y}{\left(-x+y\right)^3}$ $f_{xx}(x,y) = -\frac{2\,y}{\left(-x+y\right)^3}$; $f_{xy}(x,y) = \frac{x+y}{\left(-x+y\right)^3}$; $f_{yy}(x,y) = -\frac{2\,x}{\left(-x+y\right)^3}$ $f_{xx}(x,y) = \frac{2\,y}{\left(-x+y\right)^3}$; $f_{xy}(x,y) = -\frac{x+y}{\left(-x+y\right)^3}$; $f_{yy}(x,y) = \frac{2\,x}{\left(-x+y\right)^3}$

  8. Let $z = f(x,y)$ where $x = t^2$ and $y = t^3$ . Suppose that $f_x(x,y) = \frac{x^2\,y^3\,\left(2\,x+3\,y\right)}{\left(x+y\right)^2}$ and $f_y(x,y) = \frac{x^3\,y^2\,\left(3\,x+2\,y\right)}{\left(x+y\right)^2}$ . Find $\dfrac{dz}{dt}$.

    $\displaystyle \frac{t^9\,\left(10+9\,t\right)}{\left(1+t\right)^2}$ $\displaystyle \frac{t^{12}\,\left(13+12\,t\right)}{\left(1+t\right)^2}$ $\displaystyle \frac{t^7\,\left(8+7\,t\right)}{\left(1+t\right)^2}$ $\displaystyle \frac{t^{10}\,\left(11+10\,t\right)}{\left(1+t\right)^2}$

  9. Let $f(x,y) = x^{y}$. Find the first partial derivative $f_{ y}(x,y)$ .

    $\displaystyle x^{-1+y}\,y$ $\displaystyle x\,e^{y}$ $\displaystyle e^{y}$ $\displaystyle x^{y}\,\ln x$

  10. Let $f(x,y) = \sin \left(x^2\,y\right)$. Find the first partial derivative $f_{ x}(x,y)$ .

    $\displaystyle x^2\,\cos \left(x^2\,y\right)$ $\displaystyle 2\,x\,y\,\left(\sec \left(x^2\,y\right)\right)^2$ $\displaystyle x^2\,\left(\sec \left(x^2\,y\right)\right)^2$ $\displaystyle 2\,x\,y\,\cos \left(x^2\,y\right)$



Department of Mathematics
Last modified: 2025-07-10