Exercises discussed in class:

- 1. Show that $\operatorname{orth}_{\mathbf{a}}\mathbf{b} = \mathbf{b} \operatorname{proj}_{\mathbf{a}}\mathbf{b}$ is orthogonal to **a** (Section 12.3: Exercise 45).
- 2. Show the following (cf. Section 12.3: Exercise 61, 62, 63).
 - (a) $\mathbf{a} \cdot \mathbf{b} \le |\mathbf{a}| \cdot |\mathbf{b}|$ (and consequently $|\mathbf{a} \cdot \mathbf{b}| \le |\mathbf{a}| \cdot |\mathbf{b}|$)
 - (b) $|\mathbf{a} + \mathbf{b}|^2 \le (|\mathbf{a}| + |\mathbf{b}|)^2$ (and consequently $|\mathbf{a} + \mathbf{b}| \le |\mathbf{a}| + |\mathbf{b}|$)
 - (c) $|\mathbf{a} + \mathbf{b}|^2 + |\mathbf{a} \mathbf{b}|^2 = 2(|\mathbf{a}|^2 + |\mathbf{b}|^2)$
- 3. Let ${\bf u}$ and ${\bf v}$ be two orthogonal unit vectors. Show the following (cf Section 12.4: Exercise 50).
 - (a) $\operatorname{comp}_{\mathbf{u}}[\mathbf{a} \times (\mathbf{u} \times \mathbf{v})] = \mathbf{a} \cdot \mathbf{v}$ [Hint: Apply $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{u} = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{u})$ and $(\mathbf{u} \times \mathbf{v}) \times \mathbf{u} = \mathbf{v}$]
 - (b) $\operatorname{comp}_{\mathbf{v}}[\mathbf{a} \times (\mathbf{u} \times \mathbf{v})] = -\mathbf{a} \cdot \mathbf{u}$ [Hint: Use $(\mathbf{u} \times \mathbf{v}) \times \mathbf{v} = -\mathbf{u}$]
 - (c) $\mathbf{a} \times (\mathbf{u} \times \mathbf{v}) = (\mathbf{a} \cdot \mathbf{v})\mathbf{u} (\mathbf{a} \cdot \mathbf{u})\mathbf{v}$
 - (d) If **b** and **c** are orthogonal then $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$
- 4. Let $\mathbf{b}' = \operatorname{proj}_{\mathbf{b}} \mathbf{c}$ and $\mathbf{c}' = \operatorname{orth}_{\mathbf{b}} \mathbf{c}$. Show the following (cf Section 12.4: Exercise 50).
 - (a) $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \mathbf{a} \times (\mathbf{b} \times \mathbf{c}')$ [Hint: Use $\mathbf{c} = \mathbf{b}' + \mathbf{c}'$ and $\mathbf{b} \times \mathbf{b}' = \mathbf{0}$] (b) $(\mathbf{a} \cdot \mathbf{c}')\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}' = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$ [Hint: Use $\mathbf{c} = \gamma \mathbf{b} + \mathbf{c}'$ with $\gamma = \frac{\mathbf{b} \cdot \mathbf{c}}{|\mathbf{b}|^2}$] (c) $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$

Key formulas to memorize: Let $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$ with angle θ between \mathbf{a} and \mathbf{b} .

- 1. (Equation of sphere centered at P(a, b, c)) $(x a)^2 + (y b)^2 + (z c)^2 = r^2$
- 2. (Dot product) $\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3 = |\mathbf{a}| \cdot |\mathbf{b}| \cos \theta$
- 3. (Cross product) $\mathbf{a} \times \mathbf{b} = \left\langle \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix}, \begin{vmatrix} a_3 & a_1 \\ b_3 & b_1 \end{vmatrix}, \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \right\rangle$ where $\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = a_1b_2 a_2b_1$
- 4. (Unit vector to \mathbf{a}) $\mathbf{u} = \frac{\mathbf{a}}{|\mathbf{a}|}$ with $|\mathbf{a}|^2 = \mathbf{a} \cdot \mathbf{a}$

5. (Scalar and vector projection of **b** onto **a**) $\operatorname{comp}_{\mathbf{a}}\mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$ and $\operatorname{proj}_{\mathbf{a}}\mathbf{b} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2}\right)\mathbf{a}$ 6. $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| \cdot |\mathbf{b}| \cdot |\sin\theta|$

Online quiz No.1: Start online quiz at the course website.