Iterated Integrals
The iterated integral
![$\displaystyle \int_a^b\left[\int_c^d f(x,y) dy\right] dx
$](img59.png)
--> integrate(integrate(f(x,y),y,c,d),x,a,b)The applications include (1) double integrals over general regions of type I and II, and (2) double integrals in polar coordinates.
- The integral
--> f(x,y) := x+2*y; --> h(x) := 2*x^2; --> k(x) := x^2 + 1; --> integrate(integrate(f(x,y),y,h(x),k(x)),x,-1,1)
- The integral
is carried out by
--> f(x,y) := 3*x+4*y^2; --> integrate(integrate(f(r*cos(s),r*sin(s))*r,r,1,2),s,0,%pi)
- The computation of Jacobian for
and
is carried out by
--> [x,y]: [u^2-v^2, 2*u*v] --> determinant(jacobian([x,y],[u,v]))
The triple integral

--> integrate(integrate(integrate(f(x,y,z),x,a,b),y,c,d),z,r,s)
Here are some of the even-numbered exercises assigned in the class.
- section15-1.wxm and exercise15-1.wxm (iterated integrals)
- section15-2.wxm and exercise15-2.wxm (double integrals over general regions)
- section15-3.wxm and exercise15-3.wxm (double integrals in polar coordinates)
- section15-5.wxm (surface area)
- section15-6.wxm and exercise15-6.wxm (triple integrals)
- exercise15-8.wxm (triple integrals in spherical coordinates)
- section15-9.wxm and exercise15-9.wxm (change of variables)
© TTU Mathematics