Generating...                               s20quiz01_n10

  1. Sketch the graph of $\displaystyle -x^2-4\,x$.

    Image s20quiz01_pick_plot0

    Image s20quiz01_pick_plot1

    Image s20quiz01_pick_plot2

    Image s20quiz01_pick_plot3

  2. Find the equation for the parabola shown below.

    Image s20quiz01_pick_plot4

    $\displaystyle y=x^2-4\,x$

    $\displaystyle y=2\,x^2-8\,x$

    $\displaystyle y=8\,x-2\,x^2$

    $\displaystyle y=4\,x-x^2$

  3. Solve the equation $\displaystyle 4^{x}=3^{1-x}$

    $\displaystyle \left[ x={{\ln 3}\over{\ln 4+\ln 3}} \right] $

    $\displaystyle \left[ x={{1}\over{2}} \right] $

    [ x = 1 ]

    $\displaystyle \left[ x={{1}\over{\ln 4+\ln 3}} \right] $

  4. Solve the equation $\displaystyle 2\,x^2-4\,x+1=0$.

    $\displaystyle \left[ x=-{{\sqrt{6}-2}\over{2}} , x={{\sqrt{6}+2}\over{2}}
\right] $

    $\displaystyle \left[ x=2-\sqrt{3} , x=\sqrt{3}+2 \right] $

    $\displaystyle \left[ x=-{{\sqrt{2}-2}\over{2}} , x={{\sqrt{2}+2}\over{2}}
\right] $

    $\displaystyle \left[ x=-{{\sqrt{2}+2}\over{2}} , x={{\sqrt{2}-2}\over{2}}
\right] $

  5. Solve the equation $\displaystyle x^2\,e^{x}-5\,x\,e^{x}=0$

    $\displaystyle \left[ x=-\sqrt{5} , x=\sqrt{5} \right] $

    $\displaystyle \left[ x=0 , x=e^5 \right] $

    $\displaystyle \left[ x=e , x=e^5 \right] $

    [ x = 0 ,  x = 5 ]

  6. If a linear function $f$ satisfies f( − 2) = −3 and f(0) = −5, find $f(x)$.

    y = −x − 5

    $\displaystyle y={{3\,x}\over{2}}+5$

    $\displaystyle y={{3\,x}\over{2}}-5$

    y = 5 − x

  7. Sketch the graph for

    $\displaystyle f(x) = \begin{cases}
x+4 &
\mbox{if $x < -2$} \\
x^2 &
\mbox{if $ -2 \le x \le 2$} \\
3-x &
\mbox{if $ 2 < x$}
\end{cases}
$

    Image s20quiz01_pick_plot5

    Image s20quiz01_pick_plot6

    Image s20quiz01_pick_plot7

    Image s20quiz01_pick_plot8

  8. Solve the equation $\displaystyle
2^{x-2}\,8^{x}
= ( 4)
2^{2\,x}$

    [ x = 2 ]

    $\displaystyle \left[ x={{6}\over{7}} \right] $

    [ x = −4 ]

    [ x = 3 ]

  9. Let $f(x) = \sqrt{x}-2$ , and let $g(x) = 25-x^2$ . Sketch the graph of  ${f\circ g}$.

    Image s20quiz01_pick_plot9

    Image s20quiz01_pick_plot10

    Image s20quiz01_pick_plot11

    Image s20quiz01_pick_plot12

  10. Solve the equation $\displaystyle \ln x=\ln \left(x+2\right)-2$

    $\displaystyle \left[ x=-{{2\,e^2}\over{e^2-1}} \right] $

    [ x = 2 ]

    $\displaystyle \left[ x={{2}\over{e^2-1}} \right] $

    [ x = 0 ]



Department of Mathematics
Last modified: 2025-05-04