1. Evaluate $\displaystyle \int_{0}^{1}{\left(1-x^2\right)^2\;dx}$.

    $\displaystyle\Big[
{{x^5}\over{5}}-{{2\,x^3}\over{3}}+x
\Big]_0^1 =
{{8}\over{15}}$ $\displaystyle\Big[
{{x^3}\over{3}}
\Big]_0^1 =
{{1}\over{3}}$ $\displaystyle\Big[
x-{{x^3}\over{3}}
\Big]_0^1 =
{{2}\over{3}}$ $\displaystyle\Big[
x^4-2\,x^2+1
\Big]_0^1 =
-1$

  2. Find $\displaystyle \int {{{1-\cos ^2x}\over{\cos ^2x}}}{\;dx}$.

    $\displaystyle -\tan x + C$ $\displaystyle \tan x-x + C$ $\displaystyle \tan x+x + C$ $\displaystyle \tan x + C$

  3. Find $\displaystyle \int {{{\left(\ln x\right)^2}\over{x}}}{\;dx}$ by substituting $\displaystyle u=\ln x$

    $\displaystyle
\int {u^2}{\;du}
= {{\left(\ln x\right)^3}\over{3}} + C$ $\displaystyle
\int {u}{\;du}
= {{\left(\ln x\right)^2}\over{2}} + C$ $\displaystyle
2\,\int {u}{\;du}
= \left(\ln x\right)^2 + C$ $\displaystyle
\int {e^{u}}{\;du}
= x + C$

  4. Find $\displaystyle \int {\left(\sec x\right)^3\,\tan x}{\;dx}$ by using substitution.

    $\displaystyle
-{{1}\over{2\,\cos ^2x}} + C$ $\displaystyle
-{{1}\over{\cos x}} + C$ $\displaystyle
{{1}\over{3\,\cos ^3x}} + C$ $\displaystyle
{{1}\over{2\,\cos ^2x}} + C$

  5. Evaluate $\displaystyle \int_{1}^{4}{{{1}\over{\sqrt{x}}}\;dx}$.

    $\displaystyle\Big[
-{{1}\over{2\,x^{{{3}\over{2}}}}}
\Big]_1^4 =
{{7}\over{16}}$ $\displaystyle\Big[
{{1}\over{2\,\sqrt{x}}}
\Big]_1^4 =
-{{1}\over{4}}$ $\displaystyle\Big[
{{1}\over{\sqrt{x}}}
\Big]_1^4 =
-{{1}\over{2}}$ $\displaystyle\Big[
2\,\sqrt{x}
\Big]_1^4 =
2$ $\displaystyle\Big[
\sqrt{x}
\Big]_1^4 =
1$

  6. Find $\displaystyle \int {{{\left(x+1\right)^2}\over{\sqrt{x}}}}{\;dx}$.

    $\displaystyle {{2\,x^{{{5}\over{2}}}}\over{5}}+{{4\,x^{{{3}\over{2}}}}\over{3}}+2
\,\sqrt{x} + C$ $\displaystyle {{2\,x^{{{3}\over{2}}}}\over{3}} + C$ $\displaystyle {{2\,\left(x+1\right)}\over{\sqrt{x}}}-{{\left(x+1\right)^2}\over{2
\,x^{{{3}\over{2}}}}} + C$ $\displaystyle {{2\,x^{{{7}\over{2}}}}\over{7}} + C$

  7. Find $\displaystyle \int {{{x^2}\over{\sqrt{x^3+1}}}}{\;dx}$ by substituting $\displaystyle u=x^3+1$

    $\displaystyle
\int {{{1}\over{\sqrt{u}}}}{\;du}
= 2\,\sqrt{x^3+1} + C$ $\displaystyle
\int {{{1}\over{u^{{{3}\over{2}}}}}}{\;du}
= -{{2}\over{\sqrt{x^3+1}}} + C$ $\displaystyle
{{\int {{{1}\over{\sqrt{u}}}}{\;du}}\over{3}}
= {{2\,\sqrt{x^3+1}}\over{3}} + C$ $\displaystyle
{{\int {{{u-1}\over{\sqrt{u}}}}{\;du}}\over{3}}
= {{2\,\left(x^3+1\right)^{{{3}\over{2}}}}\over{9}}-{{2\,\sqrt{x^3+1}
}\over{3}} + C$

  8. Evaluate $\displaystyle \int_{-2}^{-1}{e^{x+2}\;dx}$.

    $\displaystyle\Big[
e^{x+3}
\Big]_{ -2}^{ -1} =
e^2-e$ $\displaystyle\Big[
e^{x+2}
\Big]_{ -2}^{ -1} =
e-1$ $\displaystyle\Big[
e^{x}
\Big]_{ -2}^{ -1} =
e^ {- 1 }-e^ {- 2 }$ $\displaystyle\Big[
2\,e^{x}
\Big]_{ -2}^{ -1} =
2\,e^ {- 1 }-2\,e^ {- 2 }$

  9. Find $\displaystyle \int {\left(x-2\right)^{{{3}\over{2}}}}{\;dx}$ by using substitution.

    $\displaystyle
-{{2\,\left(x-2\right)^{{{5}\over{2}}}}\over{5}} + C$ $\displaystyle
{{2\,\left(x-2\right)^{{{3}\over{2}}}}\over{3}} + C$ $\displaystyle
{{2\,\left(x-2\right)^{{{5}\over{2}}}}\over{5}} + C$ $\displaystyle
{{2\,\left(x-2\right)^{{{5}\over{2}}}}\over{5}} + C$ $\displaystyle
-{{2\,\left(x-2\right)^{{{5}\over{2}}}}\over{5}} + C$

  10. Find $\displaystyle \int {{{e^{\sqrt{x}}}\over{\sqrt{x}}}}{\;dx}$ by using substitution.

    $\displaystyle
2\,e^{\sqrt{x}} + C$ $\displaystyle
x + C$ $\displaystyle
-2\,e^{\sqrt{x}} + C$ $\displaystyle
-x + C$



Department of Mathematics
Last modified: 2024-09-08