Generating...                               s20quiz18_n22

  1. Find $\displaystyle \int {\sqrt{x-1}\,x}{\;dx}$ by substituting u = x − 1

    $\displaystyle
\int {\left(u-1\right)\,\sqrt{u}}{\;du}
= {{2\,\left(x+1\right)^{{{5}\over{2}}}}\over{5}}-{{2\,\left(x+1
\right)^{{{3}\over{2}}}}\over{3}} + C$ $\displaystyle
\int {\sqrt{u}\,\left(u+1\right)}{\;du}
= {{2\,\left(x-1\right)^{{{5}\over{2}}}}\over{5}}+{{2\,\left(x-1
\right)^{{{3}\over{2}}}}\over{3}} + C$ $\displaystyle
\int {\sqrt{u}}{\;du}
= {{2\,\left(x-1\right)^{{{3}\over{2}}}}\over{3}} + C$ $\displaystyle
\int {\sqrt{u}}{\;du}
= {{2\,\left(x+1\right)^{{{3}\over{2}}}}\over{3}} + C$

  2. Find $\displaystyle \int {{{1}\over{x^2+1}}+1}{\;dx}$.

    $\displaystyle \arctan x+x + C$ $\displaystyle -{{\ln \left(x+1\right)}\over{2}}+x+{{\ln \left(x-1\right)}\over{
2}} + C$ $\displaystyle x-{{1}\over{x}} + C$ $\displaystyle -{{2\,x}\over{\left(x^2+1\right)^2}} + C$

  3. Evaluate $\displaystyle \int_{1}^{4}{{{1}\over{x^2}}\;dx}$.

    $\displaystyle\Big[
{{1}\over{x}}
\Big]_1^4 =
-{{3}\over{4}}$ $\displaystyle\Big[
-{{2}\over{x^3}}
\Big]_1^4 =
{{63}\over{32}}$ $\displaystyle\Big[
-{{1}\over{x}}
\Big]_1^4 =
{{3}\over{4}}$ $\displaystyle\Big[
-{{1}\over{x^2}}
\Big]_1^4 =
{{15}\over{16}}$ $\displaystyle\Big[
{{1}\over{x^2}}
\Big]_1^4 =
-{{15}\over{16}}$

  4. Find $\displaystyle \int {{{\cos ^2x+1}\over{\cos ^2x}}}{\;dx}$.

    $\displaystyle \tan x+x + C$ $\displaystyle \tan x + C$ $\displaystyle \tan x-x + C$ $\displaystyle -\tan x + C$

  5. Find $\displaystyle \int {x^3\,\left(x^4+2\right)^3}{\;dx}$ by substituting $\displaystyle u=x^4+2$

    $\displaystyle
{{\int {u^3}{\;du}}\over{4}}
= {{\left(x^4+2\right)^4}\over{16}} + C$ $\displaystyle
{{\int {\left(u-2\right)\,u^3}{\;du}}\over{4}}
= {{\left(x^4+2\right)^5}\over{20}}-{{\left(x^4+2\right)^4}\over{8}} + C$ $\displaystyle
\int {u^3}{\;du}
= {{\left(x^4+2\right)^4}\over{4}} + C$ $\displaystyle
\int {u^2}{\;du}
= {{\left(x^4+2\right)^3}\over{3}} + C$

  6. Find $\displaystyle \int {\left(\sec x\right)^2\,\tan x}{\;dx}$ by using substitution.

    $\displaystyle
-{{1}\over{\cos x}} + C$ $\displaystyle
{{1}\over{\cos x}} + C$ $\displaystyle
\ln \cos x + C$ $\displaystyle
{{\tan ^2x}\over{2}} + C$

  7. Evaluate $\displaystyle \int_{0}^{{{\pi}\over{4}}}{{{1-\cos ^2x}\over{\cos ^2x}}\;dx}$.

    $\displaystyle\Big[
-\tan x
\Big]_{ 0}^{ {{\pi}\over{4}}} =
-1$ $\displaystyle\Big[
\tan x-x
\Big]_{ 0}^{ {{\pi}\over{4}}} =
-{{\pi-4}\over{4}}$ $\displaystyle\Big[
{{1}\over{\cos ^2x}}-1
\Big]_{ 0}^{ {{\pi}\over{4}}} =
1$ $\displaystyle\Big[
x-\sin x
\Big]_{ 0}^{ {{\pi}\over{4}}} =
{{\sqrt{2}\,\pi-4}\over{2^{{{5}\over{2}}}}}$

  8. Find $\displaystyle \int {e^{x}\,\sqrt{e^{x}+1}}{\;dx}$ by substituting $\displaystyle u=e^{x}+1$

    $\displaystyle
\int {{{1}\over{\sqrt{u}}}}{\;du}
= 2\,\sqrt{e^{x}+1} + C$ $\displaystyle
\int {\sqrt{u}}{\;du}
= {{2\,\left(e^{x}+1\right)^{{{3}\over{2}}}}\over{3}} + C$ $\displaystyle
-\int {\sqrt{u}}{\;du}
= -{{2\,\left(e^{x}+1\right)^{{{3}\over{2}}}}\over{3}} + C$ $\displaystyle
\int {\left(u-1\right)\,\sqrt{u}}{\;du}
= {{2\,\left(e^{x}+1\...
...}\over{2}}}}\over{5}}-{{2\,\left(e^{x
}+1\right)^{{{3}\over{2}}}}\over{3}} + C$

  9. Find $\displaystyle \int {\cos x\,\sin ^3x}{\;dx}$ by substituting $\displaystyle u=\sin x$

    $\displaystyle
\int {u^3\,\sqrt{1-u^2}}{\;du}
= -{{\sin ^2x\,\left(1-\sin ^2...
...er{2}}}}\over{5}}-{{2
\,\left(1-\sin ^2x\right)^{{{3}\over{2}}}}\over{15}} + C$ $\displaystyle
\int {u^2}{\;du}
= {{\sin ^3x}\over{3}} + C$ $\displaystyle
\int {u^3}{\;du}
= {{\sin ^4x}\over{4}} + C$ $\displaystyle
-\int {u^3}{\;du}
= -{{\sin ^4x}\over{4}} + C$

  10. Evaluate $\displaystyle \int_{0}^{\pi}{3\,\cos x-3\,\sin x\;dx}$.

    $\displaystyle\Big[
-3\,\sin x-3\,\cos x
\Big]_0^\pi =
6$ $\displaystyle\Big[
3\,\cos x-3\,\sin x
\Big]_0^\pi =
-6$ $\displaystyle\Big[
3\,\sin x+3\,\cos x
\Big]_0^\pi =
-6$ $\displaystyle\Big[
3\,\sin x-3\,\cos x
\Big]_0^\pi =
6$ $\displaystyle\Big[
3\,\cos x-3\,\sin x
\Big]_0^\pi =
-6$



Department of Mathematics
Last modified: 2025-06-19