1. Find $\displaystyle \int {x^3\,\sqrt{x^4+3}}{\;dx}$ by substituting $\displaystyle u=x^4+3$

    $\displaystyle
\int {\sqrt{u}}{\;du}
= {{2\,\left(x^4+3\right)^{{{3}\over{2}}}}\over{3}} + C$ $\displaystyle
{{\int {\left(u-3\right)\,\sqrt{u}}{\;du}}\over{4}}
= {{\left...
...{{{5}\over{2}}}}\over{10}}-{{\left(x^4+3
\right)^{{{3}\over{2}}}}\over{2}} + C$ $\displaystyle
{{\int {\sqrt{u}}{\;du}}\over{4}}
= {{\left(x^4+3\right)^{{{3}\over{2}}}}\over{6}} + C$ $\displaystyle
\int {{{1}\over{\sqrt{u}}}}{\;du}
= 2\,\sqrt{x^4+3} + C$

  2. Evaluate $\displaystyle \int_{1}^{4}{{{\sqrt{x}+1}\over{\sqrt{x}}}\;dx}$.

    $\displaystyle\Big[
x+2\,\sqrt{x}
\Big]_1^4 =
5$ $\displaystyle\Big[
{{\left(\sqrt{x}+1\right)^2}\over{x}}
\Big]_1^4 =
-{{7}\over{4}}$ $\displaystyle\Big[
{{2\,x^{{{3}\over{2}}}}\over{3}}+x
\Big]_1^4 =
{{23}\over{3}}$ $\displaystyle\Big[
2\,\sqrt{x}
\Big]_1^4 =
2$

  3. Evaluate $\displaystyle \int_{1}^{4}{x^{{{3}\over{2}}}\;dx}$.

    $\displaystyle\Big[
{{3\,\sqrt{x}}\over{2}}
\Big]_1^4 =
{{3}\over{2}}$ $\displaystyle\Big[
x^{{{5}\over{2}}}
\Big]_1^4 =
31$ $\displaystyle\Big[
x^{{{3}\over{2}}}
\Big]_1^4 =
7$ $\displaystyle\Big[
{{5\,x^{{{3}\over{2}}}}\over{2}}
\Big]_1^4 =
{{35}\over{2}}$ $\displaystyle\Big[
{{2\,x^{{{5}\over{2}}}}\over{5}}
\Big]_1^4 =
{{62}\over{5}}$

  4. Find $\displaystyle \int {{{x^2+1}\over{\sqrt{x}}}}{\;dx}$.

    $\displaystyle 2\,\sqrt{x} + C$ $\displaystyle {{\left(x^2+1\right)^2}\over{x}} + C$ $\displaystyle {{x^3}\over{3}}+x + C$ $\displaystyle {{2\,x^{{{5}\over{2}}}+10\,\sqrt{x}}\over{5}} + C$

  5. Find $\displaystyle \int {{{\cos \sqrt{x}}\over{\sqrt{x}}}}{\;dx}$ by using substitution.

    $\displaystyle
-2\,\sin \sqrt{x} + C$ $\displaystyle
2\,\sin \sqrt{x} + C$ $\displaystyle
-2\,\cos \sqrt{x} + C$ $\displaystyle
2\,\cos \sqrt{x} + C$

  6. Find $\displaystyle \int {\left(\sec x\right)^2\,\tan x}{\;dx}$ by using substitution.

    $\displaystyle
\ln \cos x + C$ $\displaystyle
{{\tan ^2x}\over{2}} + C$ $\displaystyle
{{1}\over{\cos x}} + C$ $\displaystyle
-{{1}\over{\cos x}} + C$

  7. Find $\displaystyle -\int {\cos x\,\sin ^5x}{\;dx}$ by substituting $\displaystyle u=\sin x$

    $\displaystyle
-\int {u^4}{\;du}
= -{{\sin ^5x}\over{5}} + C$ $\displaystyle
-\int {u^5\,\sqrt{1-u^2}}{\;du}
= {{\sin ^4x\,\left(1-\sin ^2...
...{2}}}}\over{35}}+{{8\,
\left(1-\sin ^2x\right)^{{{3}\over{2}}}}\over{105}} + C$ $\displaystyle
\int {u^5}{\;du}
= {{\sin ^6x}\over{6}} + C$ $\displaystyle
-\int {u^5}{\;du}
= -{{\sin ^6x}\over{6}} + C$

  8. Evaluate $\displaystyle \int_{0}^{1}{\left(4-x\right)^2\;dx}$.

    $\displaystyle\Big[
4\,x-{{x^2}\over{2}}
\Big]_0^1 =
{{7}\over{2}}$ $\displaystyle\Big[
{{x^3}\over{3}}-4\,x^2+16\,x
\Big]_0^1 =
{{37}\over{3}}$ $\displaystyle\Big[
{{x^2}\over{2}}
\Big]_0^1 =
{{1}\over{2}}$ $\displaystyle\Big[
x^2-8\,x+16
\Big]_0^1 =
-7$

  9. Find $\displaystyle \int {1-{{1}\over{x^2+1}}}{\;dx}$.

    $\displaystyle x-\arctan x + C$ $\displaystyle x+{{1}\over{x}} + C$ $\displaystyle {{\ln \left(x+1\right)}\over{2}}+x-{{\ln \left(x-1\right)}\over{2
}} + C$ $\displaystyle {{2\,x}\over{\left(x^2+1\right)^2}} + C$

  10. Find the derivative $f'(x)$ for $f(x) = \displaystyle
\int_{0}^{x}{t\,\sin ^2t\;dt}$.

    $f'(x) = \displaystyle
-x\,\cos ^2x$ $f'(x) = \displaystyle
-x\,\sin ^2x$ $f'(x) = \displaystyle
x\,\sin ^2x$ $f'(x) = \displaystyle
x\,\cos ^2x$



Department of Mathematics
Last modified: 2025-08-29