1. Find $\displaystyle \int {x^2\,\sin x^3}{\;dx}$ by using substitution.

    $\displaystyle
-{{\cos x^3}\over{3}} + C$ $\displaystyle
-{{\sin x^3}\over{3}} + C$ $\displaystyle
{{\sin x^3}\over{3}} + C$ $\displaystyle
{{\cos x^3}\over{3}} + C$

  2. Find $\displaystyle \int {{{\sqrt{\ln x}}\over{x}}}{\;dx}$ by substituting $\displaystyle u=\ln x$

    $\displaystyle
\int {\sqrt{u}}{\;du}
= {{2\,\left(\ln x\right)^{{{3}\over{2}}}}\over{3}} + C$ $\displaystyle
{{\int {u}{\;du}}\over{2}}
= {{\left(\ln x\right)^2}\over{4}} + C$ $\displaystyle
\int {e^{u}}{\;du}
= x + C$ $\displaystyle
\int {{{1}\over{\sqrt{u}}}}{\;du}
= 2\,\sqrt{\ln x} + C$

  3. Evaluate $\displaystyle \int_{1}^{4}{{{\sqrt{x}+1}\over{\sqrt{x}}}\;dx}$.

    $\displaystyle\Big[
x+2\,\sqrt{x}
\Big]_1^4 =
5$ $\displaystyle\Big[
{{2\,x^{{{3}\over{2}}}}\over{3}}+x
\Big]_1^4 =
{{23}\over{3}}$ $\displaystyle\Big[
2\,\sqrt{x}
\Big]_1^4 =
2$ $\displaystyle\Big[
{{\left(\sqrt{x}+1\right)^2}\over{x}}
\Big]_1^4 =
-{{7}\over{4}}$

  4. Find $\displaystyle \int {x^2\,\left(x^3+3\right)^5}{\;dx}$ by substituting $\displaystyle u=x^3+3$

    $\displaystyle
{{\int {\left(u-3\right)\,u^5}{\;du}}\over{3}}
= {{\left(x^3+3\right)^7}\over{21}}-{{\left(x^3+3\right)^6}\over{6}} + C$ $\displaystyle
\int {u^4}{\;du}
= {{\left(x^3+3\right)^5}\over{5}} + C$ $\displaystyle
{{\int {u^5}{\;du}}\over{3}}
= {{\left(x^3+3\right)^6}\over{18}} + C$ $\displaystyle
\int {u^5}{\;du}
= {{\left(x^3+3\right)^6}\over{6}} + C$

  5. Find $\displaystyle \int {\sqrt{\sec x}\,\tan x}{\;dx}$ by using substitution.

    $\displaystyle
2\,\sqrt{\cos x} + C$ $\displaystyle
-2\,\sqrt{\cos x} + C$ $\displaystyle
{{2\,\left(\cos x\right)^{{{3}\over{2}}}}\over{3}} + C$ $\displaystyle
{{2}\over{\sqrt{\cos x}}} + C$

  6. Evaluate $\displaystyle \int_{1}^{4}{x^{{{3}\over{2}}}\;dx}$.

    $\displaystyle\Big[
{{2\,x^{{{5}\over{2}}}}\over{5}}
\Big]_1^4 =
{{62}\over{5}}$ $\displaystyle\Big[
{{5\,x^{{{3}\over{2}}}}\over{2}}
\Big]_1^4 =
{{35}\over{2}}$ $\displaystyle\Big[
{{3\,\sqrt{x}}\over{2}}
\Big]_1^4 =
{{3}\over{2}}$ $\displaystyle\Big[
x^{{{5}\over{2}}}
\Big]_1^4 =
31$ $\displaystyle\Big[
x^{{{3}\over{2}}}
\Big]_1^4 =
7$

  7. Find $\displaystyle \int {e^{x}\,\left(e^{x}+1\right)^2}{\;dx}$ by substituting $\displaystyle u=e^{x}+1$

    $\displaystyle
-\int {u^2}{\;du}
= -{{\left(e^{x}+1\right)^3}\over{3}} + C$ $\displaystyle
\int {u^2}{\;du}
= {{\left(e^{x}+1\right)^3}\over{3}} + C$ $\displaystyle
\int {\left(u-1\right)\,u^2}{\;du}
= {{\left(e^{x}+1\right)^4}\over{4}}-{{\left(e^{x}+1\right)^3}\over{3
}} + C$ $\displaystyle
\int {u}{\;du}
= {{\left(e^{x}+1\right)^2}\over{2}} + C$

  8. Find $\displaystyle \int {{{1-\sin ^2x}\over{\sin ^2x}}}{\;dx}$.

    $\displaystyle \cot x + C$ $\displaystyle -\cot x + C$ $\displaystyle x-\cot x + C$ $\displaystyle -\cot x-x + C$

  9. Find $\displaystyle \int {\cos ^5x\,\sin x}{\;dx}$ by substituting $\displaystyle u=\cos x$

    $\displaystyle
-\int {u^5\,\sqrt{1-u^2}}{\;du}
= {{\cos ^4x\,\left(1-\cos ^2...
...{2}}}}\over{35}}+{{8\,
\left(1-\cos ^2x\right)^{{{3}\over{2}}}}\over{105}} + C$ $\displaystyle
\int {u^5}{\;du}
= {{\cos ^6x}\over{6}} + C$ $\displaystyle
-\int {u^5}{\;du}
= -{{\cos ^6x}\over{6}} + C$ $\displaystyle
-\int {u^4}{\;du}
= -{{\cos ^5x}\over{5}} + C$

  10. Find $\displaystyle \int {1-{{1}\over{x^2+1}}}{\;dx}$.

    $\displaystyle x+{{1}\over{x}} + C$ $\displaystyle x-\arctan x + C$ $\displaystyle {{2\,x}\over{\left(x^2+1\right)^2}} + C$ $\displaystyle {{\ln \left(x+1\right)}\over{2}}+x-{{\ln \left(x-1\right)}\over{2
}} + C$



Department of Mathematics
Last modified: 2025-11-03