e-Mathematics > Calculus I
for 1910 student.

Basic Functions and Formulas

Logarithmic functions $ \displaystyle\log_{a} x = \frac{\ln x}{\ln a}$
Exponential functions $ \displaystyle a^x = e^{x\ln a}$
Trigonometric functions $ \displaystyle\sec x = \frac{1}{\cos x}$; $ \displaystyle\csc x = \frac{1}{\sin x}$
$ \displaystyle\tan x = \frac{\sin x}{\cos x}$; $ \displaystyle\cot x = \frac{\cos x}{\sin x}$
$ \displaystyle\cos^2 x + \sin^2 x = 1$
$ \displaystyle 1 + \tan^2 x = \sec^2 x$; $ \displaystyle 1 + \cot^2 x = \csc^2 x$
$ \sin(u + v) = \sin u \cos v + \cos u \sin v$
$ \cos(u + v) = \cos u \cos v - \sin u \sin v$
$ \displaystyle\sin^2 x = \frac{1 - \cos 2x}{2}$
$ \displaystyle\cos^2 x = \frac{1 + \cos 2x}{2}$
Hyperbolic functions $ \displaystyle\sinh x = \frac{e^x - e^{-x}}{2}$
$ \displaystyle\cosh x = \frac{e^x + e^{-x}}{2}$
$ \displaystyle\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$
$ \displaystyle\cosh^2 x - \sinh^2 x = 1$
$ \displaystyle\sinh^{-1} x = \ln\left\vert x + \sqrt{x^2 + 1}\right\vert$
$ \displaystyle\cosh^{-1} x = \ln\left\vert x + \sqrt{x^2 - 1}\right\vert$
$ \displaystyle\tanh^{-1} x = \frac{1}{2}\ln\left\vert\frac{1 + x}{1 - x}\right\vert$


© TTU Mathematics