e-Mathematics > Calculus I
for 1910 student.

Derivatives of Basic Functions

Functions Derivatives
Power and logarithmic functions $ \displaystyle\frac{d}{dx} x^n = n x^{n-1}$
$ \displaystyle\frac{d}{dx} \ln \vert x\vert = \frac{1}{x}$
Exponential functions $ \displaystyle\frac{d}{dx} e^x = e^x$
Trigonometric functions $ \displaystyle\frac{d}{dx} \sin x = \cos x$
$ \displaystyle\frac{d}{dx} \cos x = -\sin x$
$ \displaystyle\frac{d}{dx} \tan x = \frac{1}{\cos^2 x} = \sec^2 x$
$ \displaystyle\frac{d}{dx} \cot x = -\frac{1}{\sin^2 x} = -\csc^2 x$
$ \displaystyle\frac{d}{dx} \sec x = \sec x \tan x$
$ \displaystyle\frac{d}{dx} \csc x = -\csc x \cot x$
Hyperbolic functions $ \displaystyle\frac{d}{dx} \sinh x = \cosh x$
$ \displaystyle\frac{d}{dx} \cosh x = \sinh x$
$ \displaystyle\frac{d}{dx} \tanh x = \frac{1}{\cosh^2 x} = \mathrm{sech}^2 x$
$ \displaystyle\frac{d}{dx} \coth x = -\frac{1}{\sinh^2 x} = -\mathrm{csch}^2 x$
Inverse trigonometric functions $ \displaystyle\frac{d}{dx} \sin^{-1} x = \frac{1}{\sqrt{1 - x^2}}$
$ \displaystyle\frac{d}{dx} \cos^{-1} x = -\frac{1}{\sqrt{1 - x^2}}$
$ \displaystyle\frac{d}{dx} \tan^{-1} x = \frac{1}{1 + x^2}$
Inverse hyperbolic functions $ \displaystyle\frac{d}{dx} \sinh^{-1} x = \frac{1}{\sqrt{1 + x^2}}$
$ \displaystyle\frac{d}{dx} \cosh^{-1} x = \frac{1}{\sqrt{x^2 - 1}}$
$ \displaystyle\frac{d}{dx} \tanh^{-1} x = \frac{1}{1 - x^2}$


© TTU Mathematics