e-Mathematics > Calculus I
for 1910 student.

Substitution Rule

By letting $ u = g(x)$ and $ du = g'(x) dx$ we can make a composite integrand $ f(g(x)) g'(x)$ into $ f(u)$ by the following substitution rule.

$\displaystyle \int f(g(x)) g'(x) dx = \int f(u) du
$

  1. Let $ u = \sqrt{x}$ and $ du = \frac{1}{2\sqrt{x}} dx$.

    $ \displaystyle\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx
= 2\int \sin u du
= -2 \cos u + C = -2 \cos\sqrt{x} + C$

  2. Let $ u = \ln x$ and $ du = \displaystyle\frac{1}{x} dx$.

    $ \displaystyle\int \frac{\cos(\ln x)}{x} dx
= \int \cos u du
= \sin u + C = \sin(\ln x) + C$

  3. Let $ u = 1 + \sin^{-1}x$ and $ du = \displaystyle\frac{1}{\sqrt{1 - x^2}} dx$.

    \begin{displaymath}\begin{array}{ll}
\displaystyle\int \frac{1}{\sqrt{1 - x^2 +...
...^{\frac{1}{2}} + C
= 2 \sqrt{1 + \sin^{-1}x} + C
\end{array}\end{displaymath}


© TTU Mathematics