Calculus I > Precalculus Review

Quadratic Functions

Quadratic equations. Provided $ a \neq 0$, the solutions of a quadratic equation $ a x^2 + b x + c = 0$ are given by the quadratic formula

$\displaystyle x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Parabola. The graph of an equation  $ y = ax^2 + c$ with leading coefficient $ a \neq 0$ represents a parabola. It opens upward if $ a > 0$, or downward if $ a < 0$. The lowest point of an upward parabola is called the vertex of the parabola. Likewise, the vertex of a downward parabola is the highest point.

\includegraphics{lec02a.ps}

Quadratic functions. A function $ f$ is called a quadratic function if

$\displaystyle f(x) = a x^2 + b x + c$

with leading coefficient $ a \neq 0$. The quadratic function $ f$ represents a parabola; it opens upward if $ a > 0$, or downward if $ a < 0$. When $ (b^2 - 4ac) \ge 0$, the graph of $ f$ has $ x$-intercepts; the exact values of $ x$-intercepts are obtained from the quadratic formula. There is no $ x$-intercept if $ (b^2 - 4ac) < 0$.

Standard equations of parabola. The quadratic function is also written in the form

$\displaystyle f(x) = a \left(x + \frac{b}{2a}\right)^2
 + \left(c - \frac{b^2}{4a}\right)$

The above formula is called a standard equation of a parabola with the vertex

$\displaystyle \left(-\frac{b}{2a},\: c - \frac{b^2}{4a}\right).
$

\includegraphics{lec02b.ps}


© TTU Mathematics