Calculus I > Precalculus Review

Rational Functions

Reciprocal function. A function $ f$ is called a reciprocal function if

$\displaystyle f(x) = \frac{ k }{x}
$

with constant value $ k \neq 0$. The domain of $ f$ is $ D = (-\infty,0)\cup (0,\infty)$, that is, the set of all real values except $ x = 0$.

  1. If $ k > 0$, $ f(x)$ increases without bound as $ x$ approaches 0 from the right, and $ f(x)$ decreases without bound as $ x$ approaches 0 from the left. In short, we write

    $\displaystyle f(x) \to \infty$    as $ x \to 0+$    and $\displaystyle \quad
f(x) \to -\infty$    as $ x \to 0-$. $\displaystyle $

  2. If $ k < 0$, $ f(x)$ decrease without bound as $ x$ approaches 0 from the right, and $ f(x)$ increases without bound as $ x$ approaches 0 from the left. In short, we write

    $\displaystyle f(x) \to -\infty$    as $ x \to 0+$    and $\displaystyle \quad
f(x) \to \infty$    as $ x \to 0-$. $\displaystyle $

1. $ k > 0$ 2. $ k < 0$
\includegraphics{lec06a.ps} \includegraphics{lec06b.ps}


© TTU Mathematics