Calculus I > Precalculus Review

Vertical and Horizontal Asymptote

Linear rational functions. A function $ f$ is called a linear rational function if

$\displaystyle f(x) = \frac{a x + b}{c x + d}
$

Rational functions. A function $ f$ is called a rational function if

$\displaystyle f(x) = \frac{g(x)}{h(x)}
$ (1)

with polynomial functions $ g(x)$ of degree $ n$ and $ h(x)$ of degree $ k$.

Vertical asymptote. A line $ x = a$ is called a vertical asymptote for $ f$ if

$\displaystyle f(x) \to \infty$    or $\displaystyle \quad
f(x) \to -\infty$

as $ x$ approaches $ a$ from either the left or the right. A linear rational function has the vertical asymptote  $ x = -(d/c)$ (assuming $ ad \neq bc$).

In general, when $ g(a) \neq 0$ and $ h(a) = 0$ in (Equation 1), the line $ x = a$ becomes a vertical asymptote for (Equation 1). If $ g(a) = 0$ and $ h(a) = 0$, the point $ x = a$ can be considered as a “hole.”

Horizontal asymptote. A line $ y = c$ is called a horizontal asymptote for $ f$ if

$\displaystyle f(x) \to c$    as $ x \to \infty$ (or $ x \to -\infty$). $\displaystyle $

  1. If $ n < k$, a rational function $ f$ has the horizontal asymptote $ y = 0$.

  2. If $ n = k$, $ f$ has the horizontal asymptote  $ y = (a_n/b_k)$ with the respective leading coefficients $ a_n$ and $ b_k$ of $ g(x)$ and $ h(x)$.

  3. If $ n > k$, $ f$ has no horizontal asymptote.

In particular, a linear rational function $ f$ has the horizontal asymptote $ y = (a/c)$.

Oblique asymptote. A line  $ y = a x + b$ is called a oblique asymptote if $ f$ can be expressed in the form

$\displaystyle f(x) = (a x + b) + \frac{r(x)}{h(x)} ,
$

with $ r(x)/h(x) \to 0$ as $ x \to \infty$ (or $ x \to -\infty$).


© TTU Mathematics