Calculus I > Precalculus Review


Trigonometric functions

Sine, cosine and tangent functions. Given a right triangle with acute angle $ \theta$, the sine, the cosine and the tangent functions of the radian $ \theta$ are respectively given by

$\displaystyle \sin\theta = \dfrac{ b }{c};
\hspace{0.2in} \cos\theta = \dfrac{ a }{c};
\hspace{0.2in} \tan\theta = \dfrac{ b }{a}.
$

\includegraphics{lec09c.ps}

Now suppose that the hypotenuse of right triangle is $ 1$. Then (i) the opposite side equals $ \sin\theta$ and (ii) the adjacent side equals $ \cos\theta$. By Pythagorean theorem we obtain

$\displaystyle \sin^2\theta + \cos^2\theta = 1
$

\includegraphics{lec09d.ps}

We can also observe that

$\displaystyle \tan\theta = \dfrac{\sin\theta}{\cos\theta}.
$

Cosecant, secant and cotangent functions. We can define the cosecant, the secant and the cotangent functions of $ \theta$ as the respective reciprocal of the sine, the cosine and the tangent functions of $ \theta$.

$\displaystyle \csc\theta = \dfrac{1}{\sin\theta};
\hspace{0.2in} \sec\theta = \dfrac{1}{\cos\theta};
\hspace{0.2in} \cot\theta = \dfrac{1}{\tan\theta}.
$

All the six functions introduced above are collectively called the trigonometric functions.


© TTU Mathematics