Calculus I > Precalculus Review

Tangent function

The function $ y = \tan x = \frac{\sin x}{\cos x}$ is called tangent function. The function $ \tan x$ is an odd function since $ \tan(-x) = \frac{\sin(-x)}{\cos(-x)}
= \frac{-\sin x}{\cos x} = -\tan x$. And it is periodic with period $ \pi$ since $ \tan(x + \pi) = \frac{\sin(x + \pi)}{\cos(x + \pi)}
= \frac{-\sin x}{-\cos x} = \tan x$.

(S) $ y = \sin x$

\includegraphics{lec11a.ps}

(C) $ y = \cos x$

\includegraphics{lec11b.ps}

(T) $ y = \tan x = \dfrac{\sin x}{\cos x}$

\includegraphics{lec11c.ps}

The lines $ x = \pi/2$ and $ x = -\pi/2$ are the vertical asymptotes of $ \tan x$ since $ \tan x \to \infty$ as $ x \to (\pi/2)-$ ($ x$ approaches $ \pi/2$ from the left), and $ \tan x \to -\infty$ as $ x \to (-\pi/2)+$ ($ x$ approaches $ -\pi/2$ from the right). In fact, $ x = \dfrac{\pi}{2} + n\pi$ is the vertical asymptote for $ \tan x$ for every interger $ n$, since it is periodic with period $ \pi$. The domain and the range are given as $ D = \left\{x \in\mathbb{R}: x \neq \dfrac{\pi}{2} + n\pi
\mbox{ for $n = 0,\pm 1,\pm 2,\ldots$ } \right\}$ and $ R = (-\infty, \infty)$.


© TTU Mathematics