Calculus I > Precalculus Review [Admin]


Trigonometric additions and subtractions

Let $ \overline{OA} = \cos u$ on the $ x$-axis, and $ \overline{OB} = \sin u$ on the $ y$-axis. By rotating the point $ A$ and $ B$ counterclockwise about the origin by the angle $ v$, we obtain the point $ A'$ and $ B'$ as in the figure below. Their respective coordinates are given by $ (\overline{OA}\cos v,  \overline{OA}\sin v)$ and $ (-\overline{OB}\sin v,  \overline{OB}\cos v)$. By adding these two coordinates together, we can find the the coordinate on the unit circle

$\displaystyle (\cos(u+v),\sin(u+v)) =
(\overline{OA}\cos v - \overline{OB}\sin v, 
\overline{OA}\sin v + \overline{OB}\cos v).
$

\includegraphics{lec13a.ps}

By setting $ \overline{OA} = \cos u$ and $ \overline{OB} = \sin u$, we can observe

$\displaystyle \cos(u + v) & = \cos u \cos v - \sin u \sin v
$

and

$\displaystyle \sin(u + v) & = \cos u \sin v + \sin u \cos v
= \sin u \cos v + \cos u \sin v.
$

By replacing $ v$ by $ (-v)$ in the above identities, we can find $ \cos(u - v) & = \cos u \cos v + \sin u \sin v$ and $ \sin(u - v) & = \sin u \cos v - \cos u \sin v$.


© TTU Mathematics