Calculus I > Precalculus Review

Inverse sine function

The inverse sine of $ u$, denoted by  $ \sin^{-1} u$, is defined as the unique value $ -\dfrac{\pi}{2}\le\theta\le\dfrac{\pi}{2}$ satisfying $ \sin\theta = u$. It is also known as the arcsine function $ \arcsin x$. The domain and the range are given by $ D = [-1,\:1]$ and $ R = \left[-\dfrac{\pi}{2},\:\dfrac{\pi}{2}\right]$.

\includegraphics{lec14a.ps}

Trigonometric equation. Consider the solutions in the cycle $ [0,2\pi)$ to the equation  $ {\sin\theta = u}$. By observing $ \sin(\pi - \theta) = -\sin(-\theta) = \sin\theta$, we obtain the two solutions $ \theta_1$ and $ \theta_2$ as

\begin{displaymath}
\begin{array}{lll}
\theta_1 = \sin^{-1} u & \mbox{and}\qua...
... 2\pi + \sin^{-1} u
& \quad\mbox{ if $u < 0$. }
\end{array}
\end{displaymath}

When $ u = 1$ or $ u = -1$, we find that $ \theta_1 = \theta_2$, and therefore, that there is only one solution in the interval $ [0,2\pi)$. Also note that if $ u < 0$ then $ \sin^{-1} u < 0$ is out of the interval $ [0,2\pi)$. Once the two solutions $ \theta_1$ and $ \theta_2$ in the interval $ [0,2\pi)$ to the trigonometric equation are obtained, the general solutions are given by

$\displaystyle \theta = \theta_1 + 2\pi n,\: \theta_2 + 2\pi n$    for every integer $ n$. $\displaystyle $


© TTU Mathematics