Calculus I > Precalculus Review

Composite functions

Given two functions $ f$ and $ g$, the composite function $ f\circ g$ is defined by

$\displaystyle (f\circ g)(x) = f(g(x)).
$

Graph of a composite function. If we know the graph of  $ f(x) = x^2$, we can sketch the graphs of $ f(x) + 4 = x^2 + 4$, $ f(x-4) = (x - 4)^2$, etc.

Equation of Effect on the graph of $ f$
$ {y = f(x) + c}$ Shift it vertically upward if $ c > 0$, or downward if $ c < 0$.
$ {y = f(x + c)}$ Shift it horizontally to the left if $ c > 0$, or to the right if $ c < 0$.
$ {y = c f(x)}$ Stretch it vertically if $ 1 < c$, or compress it vertically if $ 0 < c < 1$.
$ {y = f(c x)}$ Compress it horizontally if $ 1 < c$, or stretch it horizontally if $ 0 < c < 1$.


© TTU Mathematics