Calculus I > Precalculus Review

Inverse Functions

A function $ f$ is called a one-to-one function if it satisfies

$\displaystyle f(a) \neq f(b)$   whenever $ a \neq b$$\displaystyle .
$

The above condition becomes equivalent to the following: “ $ f(a) = f(b)$ always implies $ a = b$.” When a function $ f$ is a one-to-one function, the inverse function $ g$ can be defined as the function satisfying

$\displaystyle y = f(x)$    if and only if $\displaystyle \quad x = g(y).
$

We denote the inverse function of $ f$ by the symbol $ f^{-1}$.

Domain of $ f^{-1}$. If $ f$ is a one-to-one function from the domain $ D$ to the range $ R$, then the inverse function $ f^{-1}$ becomes a one-to-one function from the domain $ R$ to the range $ D$.

Horizontal line test. If a function $ f$ is one-to-one, every “horizontal line” should intersect the graph of $ f$ in at most one point.

Alternative definition of inverse function. Suppose that $ f$ is a one-to-one function with domain $ D$ and range $ R$. Then the inverse function $ f^{-1}$ can be viewed as the set $ W = \{(x, f^{-1}(x)): x \in R\}$ on the rectangular coordinate system. Furthermore, the set $ W$ is given by

$\displaystyle W = \{(x, f^{-1}(x)): x \in R\}
= \{(f(x), x): x \in D\}.
$


© TTU Mathematics