Guide for Developers >
Sandboxes
Examples and sandboxes
Maxima extension
Multiple choice style
Placement test
Placement test
Try the following sandbox, and create a quiz.
%%% enumeration type for a printable version \renewcommand{\theenumii}{\alph{enumii}} %%% Used in Problem 26 \newcommand{\aaint}[1]{\left\{x\,\left|\,x\neq #1, x \mbox{ is a nonnegative real number}\right.\right\}} \newcommand{\bbint}[1]{(-\infty, -#1) \cup (#1, \infty)} %%% Used in Problem 27 \newcommand{\cotfun}[1]{\cot(\theta #1)} \newcommand{\tanfun}[1]{\tan(\theta #1)} \newcommand{\negcotfun}[1]{-\cot(\theta #1)} \newcommand{\negtanfun}[1]{-\tan(\theta #1)} {\bf Directions.} \begin{enumerate} \item Placement Test consists of five parts, Part I, II, III, IV, and V. \begin{tabular}{lrl} \hline Section& Question& Content\\ \hline Part I& 1--6& Basic Algebra\\ Part II& 7--13& Intermediate Algebra\\ Part III& 14--19& Precalculus Algebra\\ Part IV& 20--25& Precalculus Trigonometry\\ Part V& 26, 27& Advanced Precalculus\\ \hline \end{tabular} \item Each question is followed by five suggested answers. \item Select the one best answer to each question. \item Do not spend too much time on any one question. \item Be honest: Do not use a calculator or any other resources like books, notes, tables, etc. \item Suggested time for the test: 40 minutes. \end{enumerate} % Replace true with seednum in make_random_state % to reproduce exactly the same random numbers \maximacode seednum: 20230802; seedstate: make_random_state(true); set_random_state(seedstate); pick([list]) := block([i], i:random(length(list))+1, return(list[i])); rcar(list) := block([x], x:list[random(length(list))+1], return(x)); rcadr(list) := block([x], x:list[random(length(list))+1], return([x,delete(x,list)])); pmsign(x) := block(if x >= 0 then return("+") else return("-")); round(x) := ?round(float(x)); \endmaximacode {\bf Questions.} \problemset %1 \problem \maximacode kill(x); x1: pick(-2,-1,1,2); x2: pick(-3,-5,-7,-9,-11,3,5,7,9,11); y1: pick(-2,-4,-6,-8,-11,2,4,6,8,11); y2: pick(1,3,-1,-3); \endmaximacode If \maxima x = x1/x2 \endmaxima then \maxima x + y2/x + y1\endmaxima = ? \multiplechoice \correct \maxima x1/x2 + y2*x2/x1 + y1 \endmaxima \incorrect \maxima x1/x2 + y2*x2/x1 - y1 \endmaxima \incorrect \maxima x1/x2 - y2*x2/x1 - y1 \endmaxima \incorrect \maxima x1/x2 - y2*x2/x1 + y1 \endmaxima \incorrect \maxima (x1-1)/x2 - y2*x2/x1 + y1 \endmaxima \endmultiplechoice %2 \problem \maximacode kill(x); x1: pick(7,9,11); x2: pick(1,2,4,5); x3: pick(3,7,6); y1: pick(-1,-2,-3,-4,1,2,3,4); \endmaximacode If \maxima eq: x/x3 + y1 = x1 / x2 \endmaxima, then x = ? \multiplechoice \correct \maxima solve( eq, x )[1] \endmaxima \incorrect \maxima solve( x/x3 - y1 - x1/x2, x)[1] \endmaxima \incorrect \maxima solve( x/x3 - y1 + x1/x2, x)[1] \endmaxima \incorrect \maxima solve( x/x3 + y1 + x1/x2, x)[1] \endmaxima \incorrect \maxima solve( x/x3 + y1 - x2/x1, x)[1] \endmaxima \endmultiplechoice %3 \problem \maximacode kill(a,b); x1: pick(1,3,5,7,9,-1,-3,-5,-7,-9); x2: pick(2,4,6,8,10,-2,-4,-6,-8,-10); \endmaximacode $\displaystyle \maxima* a/(x1*b) \endmaxima* \maxima* pmsign(x2) \endmaxima* \maxima* a /(abs(x2)*b) \endmaxima*$ = ? \multiplechoice \correct \maxima a/(x1*b) + a/(x2*b) \endmaxima \incorrect \maxima a/(x1*b) - a/(x2*b) \endmaxima \incorrect \maxima a/((x1*b) + (x2*b)) \endmaxima \incorrect \maxima ((x1*b) + (x2*b))/a \endmaxima \incorrect \maxima a/((x1*b)*(x2*b)) \endmaxima \endmultiplechoice %4 \problem \maximacode kill(y); m: pick([2,1],[3,1],[3,2],[4,1],[4,2],[4,3]); a: m[1]^2-m[2]^2; b: 2*m[1]*m[2]; c: m[1]^2 + m[2]^2; \endmaximacode If $y > 0$ then $\sqrt{\maxima* a^2 * y^2 \endmaxima* + \maxima* b^2 * y^2 \endmaxima*} =$ \multiplechoice \correct \maxima c*y \endmaxima \incorrect \maxima y \endmaxima \incorrect \maxima (a+b)*y \endmaxima \incorrect \maxima (a^2+b^2)*y \endmaxima \incorrect \maxima a*y \endmaxima \endmultiplechoice %5 \problem \maximacode kill(x,y); x0: pick(-8,-6,-4,-2,2,4,6,8); x1: pick(-9,-7,-5,-3,-1,1,3,5,7,9); rc: pick(-5,-4,-3,-2,-1,1,2,3,4,5); \endmaximacode The slope of the line \maxima x0*x + x1*y + rc = 0 \endmaxima is \multiplechoice \correct \maxima -x0/x1 \endmaxima \incorrect \maxima x1/x0 \endmaxima \incorrect \maxima -x1/x0 \endmaxima \incorrect \maxima x0/x1 \endmaxima \incorrect \maxima x0/x1 - 1 \endmaxima \endmultiplechoice %6 \problem \maximacode x0: pick(-5,-4,-3,-2,-1,0,1,2,3,4,5); y0: pick(-5,-4,-3,-2,-1,0,1,2,3,4,5); a: pick(-1,-2,-3,1,2,3); b: pick(-1,-2,-3,1,2,3); \endmaximacode If a rectangle has vertices (\maxima x0 \endmaxima, \maxima y0 \endmaxima), \hspace{1ex} (\maxima x0+a \endmaxima, \maxima y0 \endmaxima), \hspace{1ex} (\maxima x0 \endmaxima, \maxima y0+b \endmaxima), and (\maxima x0+a \endmaxima, \maxima y0+b \endmaxima), then the length of a diagonal is \multiplechoice \correct \maxima sqrt(a^2+b^2) \endmaxima \incorrect \maxima abs(a)+abs(b) \endmaxima \incorrect \maxima sqrt(abs(a)+abs(b)) \endmaxima \incorrect \maxima a^2+b^2 \endmaxima \incorrect \maxima abs(b) \endmaxima \endmultiplechoice %7 \problem \maximacode kill(x); a: pick(1,2,3,4,-1,-2,-3,-4); b: pick(9,16,25); c: pick(16,8); \endmaximacode $\displaystyle \maxima* (x+a)/(x^2-b) \endmaxima* \times \maxima* (c*x-c*sqrt(b))/(4*x+4*a) \endmaxima* $ = ? \multiplechoice \correct \maxima (c/4)/(x+sqrt(b)) \endmaxima \incorrect \maxima c/(x+sqrt(b)) \endmaxima \incorrect \maxima (c/4)/(x-sqrt(b)) \endmaxima \incorrect \maxima (c/2)/(x-sqrt(b)) \endmaxima \incorrect \maxima (c/4)/(x^2-b) \endmaxima \endmultiplechoice %8 \problem \maximacode a: pick(2,7,11,13); b: pick(2,3,4,-2,-3,-4,5,-5); \endmaximacode $\displaystyle \frac{1}{\maxima* b \endmaxima* + \maxima* sqrt(a) \endmaxima*}$ = \multiplechoice \correct $\displaystyle \frac{\maxima* b \endmaxima* - \maxima* sqrt(a) \endmaxima*} {\maxima* b^2 - a \endmaxima*} $ \incorrect $\displaystyle \frac{\maxima* b \endmaxima* - \maxima* sqrt(a) \endmaxima*} {\maxima* b^2 + a \endmaxima*} $ \incorrect $\displaystyle \frac{\maxima* b \endmaxima* + \maxima* sqrt(a) \endmaxima*} {\maxima* b^2 - a \endmaxima*} $ \incorrect $\displaystyle \frac{\maxima* b \endmaxima* + \maxima* sqrt(a) \endmaxima*} {\maxima* b^2 + a \endmaxima*} $ \incorrect $\maxima* -b \endmaxima* + \maxima* sqrt(a) \endmaxima* $ \endmultiplechoice %9 \problem \maximacode kill(x,y); a: pick(2,3,4,5,6); b: pick(2,3,4); ex: pick(4,6,8,10); ey: pick(4,6,8,10); \endmaximacode If $x>0$ and $y>0$, then $\sqrt{\maxima* a^3 \endmaxima* \sqrt{\maxima* b^4 \endmaxima* x^{\maxima* ex \endmaxima*} y^{\maxima* ey \endmaxima*}}}$ = \multiplechoice \correct \maxima a*b*sqrt(a)*x^quotient(ex,4)*y^quotient(ey,4) *sqrt(x^(remainder(ex,4)/2)*y^(remainder(ey,4)/2)) \endmaxima \incorrect \maxima a*b^2*sqrt(a)*x^quotient(ex,4)*y^quotient(ey,4) *sqrt(x^(remainder(ex,4)/2)*y^(remainder(ey,4)/2)) \endmaxima \incorrect \maxima a*b^2*x^quotient(ex,4)*y^quotient(ey,4) *sqrt(x^(remainder(ex,4)/2)*y^(remainder(ey,4)/2)) \endmaxima \incorrect \maxima b*x^(ex/2)*y^(ey/2) \endmaxima \incorrect \maxima a*b^2*x^(ex/2)*y^(ex/2) \endmaxima \endmultiplechoice %10 \problem \maximacode kill(x,y); a: pick(-1,-2,-3,-4,1,2,3,4); b: pick(1,2,3,4); \endmaximacode The graph of the system of equations $\begin{cases} \maxima* a*x-2*a*y=b \endmaxima* \\[1ex] \maxima* 3*a*x+6*a*y=3*b \endmaxima* \end{cases}$ consists of \multiplechoice \correct two lines intersecting where \maxima x=b/a \endmaxima \incorrect one line \incorrect two lines intersecting where \maxima x=b \endmaxima \incorrect two lines intersecting where \maxima y=b/a \endmaxima \incorrect two distinct parallel lines \endmultiplechoice %11 \problem \maximacode kill(x); x0: pick(3,4,5,6,7,8,9,10,11,12); \endmaximacode The inequality \maxima x^2-x0*x < x0+1 \endmaxima is equivalent to \multiplechoice \correct $\maxima* -1 \endmaxima* < x < \maxima* x0 + 1 \endmaxima*$ \incorrect $\maxima* -1 \endmaxima* < x < \maxima* x0 \endmaxima*$ \incorrect $\maxima* -x0-1 \endmaxima* < x < 1$ \incorrect \maxima x < -1 \endmaxima or \maxima x > x0+1 \endmaxima \incorrect $\maxima* -x0 \endmaxima* < x < 1$ \endmultiplechoice %12 \problem \maximacode kill(x,y); x0: pick(1,2,3,4); y0: pick(-4,-3,-2,-1,1,2,3,4); k: pick(3/4,1/4,-3/4,-1/4); \endmaximacode An equation of the line passing through ( \maxima x0 \endmaxima , \maxima y0 \endmaxima ) having slope \maxima k \endmaxima is \multiplechoice \correct \maxima 4*k*x-4*y = -4*y0 + 4*k*x0 \endmaxima \incorrect \maxima 4*k*x+4*y = 4*y0 - 4*k*x0 \endmaxima \incorrect \maxima 4*k*x-4*y = 4*y0 - 4*k*x0 \endmaxima \incorrect \maxima 4*k*x+4*y = -4*y0 + 4*k*x0 \endmaxima \incorrect \maxima 4*k*x-4*y = -4*y0 - 4*k*x0 \endmaxima \endmultiplechoice %13 \problem \maximacode kill(x,y); a: pick(1,2,3,-1,-2,-3); b: pick(3,4,5,16,20,-3,-4,-5,-16,-20); c: pick(12,23,44,55,22,0); \endmaximacode The graph of \maxima y=a*x^2+b*x+c \endmaxima is symmetric with respect to the line \multiplechoice \correct \maxima x=-b/(2*a) \endmaxima \incorrect \maxima x=b/(2*a) \endmaxima \incorrect \maxima y=-b/(2*a) \endmaxima \incorrect \maxima y=b/(2*a) \endmaxima \incorrect \maxima x=-b/a \endmaxima \endmultiplechoice %14 \problem \maximacode kill(x); a: pick(1,2,3,4,5,6,7,8,9,10); \endmaximacode Which of the following is the domain of $f(x)=\sqrt{x^2 - \maxima* a^2 \endmaxima* }$? \multiplechoice \correct $\left\{x \,\left|\, |x| \ge \maxima* a \endmaxima* , \,\mbox{$x$ is a real number} \right.\right\}$ \incorrect $(-\infty, \maxima* a \endmaxima* ]$ \incorrect $[\maxima* -a \endmaxima* ,\infty)$ \incorrect $\left\{x \,\left| \maxima* -a \endmaxima* \leq x \leq \maxima* a \endmaxima* , \,\mbox{$x$ is a real number} \right.\right\}$ \incorrect $(-\infty,\infty)$ \endmultiplechoice %15 \problem \maximacode kill(x,y); a: pick(1,2,3,4,5,-1,-2,-3,-4,-5); b: pick(1,2,3,4,5,-1,-2,-3,-4,-5); d: pick(1,2,0,-1); c: b^2/(4*a)+d; \endmaximacode The graphs of the two equations \maxima y=-b*x-c \endmaxima and \maxima y=a*x^2 \endmaxima intersect in how many distinct points? \maximacode if b^2-4*a*c>0 then ans[1]:"two"; if b^2-4*a*c>0 then ans[2]:"one"; if b^2-4*a*c>0 then ans[3]:"none"; if b^2-4*a*c=0 then ans[1]:"one"; if b^2-4*a*c=0 then ans[2]:"two"; if b^2-4*a*c=0 then ans[3]:"none"; if b^2-4*a*c<0 then ans[1]:"none"; if b^2-4*a*c<0 then ans[2]:"one"; if b^2-4*a*c<0 then ans[3]:"two"; ans[4]:"three"; ans[5]:"unknown"; \endmaximacode \multiplechoice \correct \maxima* ans[1] \endmaxima* \incorrect \maxima* ans[2] \endmaxima* \incorrect \maxima* ans[3] \endmaxima* \incorrect \maxima* ans[4] \endmaxima* \incorrect \maxima* ans[5] \endmaxima* \endmultiplechoice %16 \problem \maximacode kill(x); ll: [-5,-4,-3,-2,-1,1,2,3,4,5]; x0: rcar(ll); x1: rcar(delete(x0,ll)); \endmaximacode The polynomial equation \maxima x*(x^2-x0)*(x^2-x1)=0 \endmaxima has how many real roots? \multiplechoice \correct \maxima* if x0 > 0 and x1 > 0 then "five" else if x0 > 0 or x1 > 0 then "three only" else "only one" \endmaxima* \incorrect \maxima* if x0 > 0 and x1 > 0 then "three only" else if x0 > 0 or x1 > 0 then "only one" else "five" \endmaxima* \incorrect \maxima* if x0 > 0 and x1 > 0 then "only one" else if x0 > 0 or x1 > 0 then "five" else "three only" \endmaxima* \incorrect two only \incorrect four only \endmultiplechoice %17 \problem \maximacode kill(t,x); x0: pick(2,4,6,8,10,-1,-3,-4,-5); \endmaximacode If \maxima t=e^(x+x0) \endmaxima then $x=$ \multiplechoice \correct \maxima -x0+log(t) \endmaxima \incorrect \maxima (t-2)/e \endmaxima \incorrect \maxima 2*x0 \endmaxima \incorrect \maxima -2*x0 \endmaxima \incorrect \maxima log(t) \endmaxima \endmultiplechoice %18 \problem \maximacode a: pick(2,3); ll: [2,3,5,6,7]; b: rcar(delete(a,ll)); a: pick(-1,1) * a; \endmaximacode $\log_{\maxima* b \endmaxima*} \left(\displaystyle \maxima* b^a \endmaxima* \right)$ = \multiplechoice \incorrect \maxima -b \endmaxima \incorrect \maxima b \endmaxima \incorrect \maxima 1/a \endmaxima \incorrect \maxima -a \endmaxima \correct \maxima a \endmaxima \endmultiplechoice %19 \problem \maximacode kill(x,a,b); i:random(5)+1; a[1](x):=log(x); a[2](x):=1-x; a[3](x):=1-x^2; a[4](x):=exp(-x); a[5](x):=sqrt(x-1); b[1,1]:0; b[1,2]:10; b[1,3]:-10; b[1,4]:10; b[2,1]:-10; b[2,2]:10; b[2,3]:-10; b[2,4]:10; b[3,1]:-4; b[3,2]:4; b[3,3]:-18; b[3,4]:2; b[4,1]:-2; b[4,2]:2; b[4,3]:0; b[4,4]:8; b[5,1]:0; b[5,2]:20; b[5,3]:-1; b[5,4]:5; \endmaximacode Of the following, which best represents the graph beside? %\begin{figure}[h!] %\begin{center} %\scalebox{.80}{\includegraphics{fig101.eps}} %\end{center} %\caption{Graph for problem 19} %\end{figure} \maximaplot [a[i](x),b[i,1],b[i,2],b[i,3],b[i,4]] \endmaximaplot \multiplechoice \correct \maxima y=a[i](x) \endmaxima \incorrect \maxima y=a[remainder(i,5)+1](x) \endmaxima \incorrect \maxima y=a[remainder((i+1),5)+1](x) \endmaxima \incorrect \maxima y=a[remainder((i+2),5)+1](x) \endmaxima \incorrect \maxima y=a[remainder((i+3),5)+1](x) \endmaxima \endmultiplechoice %20 \problem \maximacode kill(tfun,t); i:random(2)+1; a: pick(30,60,120,150,210,240,-30,-60); t[1](x):=sec(x); t[2](x):=csc(x); if i=1 then tfun:"sec"; if i=2 then tfun:"csc"; \endmaximacode $\mbox{\maxima* tfun \endmaxima*}(\maxima* a \endmaxima* ^\circ)$ \multiplechoice \correct \maxima t[i](a*%pi/180) \endmaxima \incorrect \maxima t[i]((90-a)*%pi/180) \endmaxima \incorrect \maxima 1/t[i](a*%pi/180) \endmaxima \incorrect \maxima tan(a*%pi/180) \endmaxima \incorrect \maxima 1/tan(a*%pi/180) \endmaxima \endmultiplechoice %21 \problem \maximacode kill(t,tfun); i:random(6)+1; a: pick(90,180,270,-90,-180,-270); t[1](x):=cos(x); t[2](x):=sin(x); t[3](x):=tan(x); t[4](x):=cot(x); t[5](x):=sec(x); t[6](x):=csc(x); if i=1 then tfun:"cos"; if i=2 then tfun:"sin"; if i=3 then tfun:"tan"; if i=4 then tfun:"cot"; if i=5 then tfun:"sec"; if i=6 then tfun:"csc"; \endmaximacode $\mbox{\maxima* tfun \endmaxima*}(\maxima* a \endmaxima* ^\circ - \theta) =$ \multiplechoice \correct \maxima t[i](a*%pi/180 - theta) \endmaxima \incorrect \maxima -t[i](a*%pi/180 - theta) \endmaxima \incorrect \maxima t[i](%pi/2 - a*%pi/180 + theta) \endmaxima \incorrect \maxima -t[i](%pi/2 - a*%pi/180 + theta) \endmaxima \incorrect \maxima 1+t[i](a*%pi/180 - theta) \endmaxima \endmultiplechoice %22 \problem \maximacode kill(x); x0: pick(1,0,1/2,-1/2,sqrt(2)/2,-sqrt(2)/2,sqrt(3)/2,-sqrt(3)/2); x1: pick(2,-2,3,-3,4,5,6,7,8,-4,-5,-6,-7,-8); if x0 = 1 then a:0; if x0 = 1 then b:2*%pi; if x0 = 0 then a:1/2*%pi; if x0 = 0 then b:3/2*%pi; if x0 = 1/2 then a:1/3*%pi; if x0 = 1/2 then b:5/3*%pi; if x0 = -1/2 then a:2/3*%pi; if x0 = -1/2 then b:4/3*%pi; if x0 = sqrt(2)/2 then a:1/4*%pi; if x0 = sqrt(2)/2 then b:7/4*%pi; if x0 = -sqrt(2)/2 then a:3/4*%pi; if x0 = -sqrt(2)/2 then b:5/4*%pi; if x0 = sqrt(3)/2 then a:1/6*%pi; if x0 = sqrt(3)/2 then b:11/6*%pi; if x0 = -sqrt(3)/2 then a:5/6*%pi; if x0 = -sqrt(3)/2 then b:7/6*%pi; \endmaximacode For which values of $x$ in the interval $0 \leq x \leq 2\pi$ does \maxima (cos(x)-x0)*(cos(x)-x1)=0 \endmaxima ? \multiplechoice \correct \maxima [x=a,x=b] \endmaxima \incorrect \maxima [x=a+1/6*%pi,x=2*%pi-a] \endmaxima \incorrect \maxima [x=a,x=11/6*%pi-a] \endmaxima \incorrect $[x=1,x=2]$ \incorrect $[x=\pi]$ \endmultiplechoice %23 \problem \maximacode kill(x,tfun,a); i: random(6)+1; tfun[1](x):=sin(3*x); tfun[2](x):=csc(3*x); tfun[3](x):=cos(4*x); tfun[4](x):=sec(4*x); tfun[5](x):=tan(3*x); tfun[6](x):=cot(3*x); a[1,1]:30; a[1,2]:150; a[2,1]:30; a[2,2]:150; a[3,1]:0; a[3,2]:90; a[4,1]:0; a[4,2]:90; a[5,1]:15; a[5,2]:135; a[6,1]:15; a[6,2]:135; \endmaximacode For which values of $x$ in the interval $[0^\circ,180^\circ]$ is \maxima tfun[i](x)=1 \endmaxima \multiplechoice \correct $\mbox{\maxima a[i,1] \endmaxima}^\circ$ and $\mbox{\maxima a[i,2] \endmaxima}^\circ$ \incorrect $\mbox{\maxima a[remainder(i+1,6)+1,1] \endmaxima}^\circ$ and $\mbox{\maxima a[remainder(i+1,6)+1,2] \endmaxima}^\circ$ \incorrect $\mbox{\maxima a[remainder(i+3,6)+1,1] \endmaxima}^\circ$ and $\mbox{\maxima a[remainder(i+3,6)+1,2] \endmaxima}^\circ$ \incorrect $180^\circ$ \incorrect None of the above \endmultiplechoice %24 \problem \maximacode x0: pick(1,-1); \endmaximacode The value of the expression $2\arctan \left(\maxima* x0 \endmaxima*\right)$ (or equivalently, $2\tan^{-1}\left(\maxima* x0 \endmaxima*\right)$) is \multiplechoice \correct \maxima 2*atan(x0) \endmaxima \incorrect \maxima atan(x0) \endmaxima \incorrect \maxima 2*x0 \endmaxima \incorrect 0 \incorrect $\pi$ \endmultiplechoice %25 \problem \maximacode kill(x); a: pick(1,2,3,4,5); x0: pick(-1,1) * a; i: pick(1,2); j: delete(i,[1,2])[1]; pm: [1,-1]; \endmaximacode For all real numbers $x$, \maxima cos(x0*x)^2 + pm[i] * sin(x0*x)^2 \endmaxima = \multiplechoice \correct \maxima if i = 1 then 1 else cos(2*a*x) \endmaxima \incorrect \maxima if i = 2 then 1 else cos(2*a*x) \endmaxima \incorrect \maxima sin(2*x0*x) \endmaxima \incorrect \maxima -cos(2*a*x) \endmaxima \incorrect 0 \endmultiplechoice %26 \problem \maximacode kill(x); x1: pick(1,4,16,25,36); i: pick(1,2); j: delete(i,[1,2])[1]; ff[1]: 1/(x^2-x1); ff[2]: sqrt(x); ans[1]: concat("\\aaint{", x1, "}"); ans[2]: concat("\\bbint{", sqrt(x1), "}"); \endmaximacode If \maxima f(x)=ff[i] \endmaxima and $g(x)=\displaystyle \maxima* ff[j] \endmaxima*$, then the domain of $f$ composite $g$, $(f \circ g)(x)$, is \multiplechoice \correct \maxima ans[i] \endmaxima \incorrect \maxima ans[j] \endmaxima \incorrect All real numbers \incorrect $(0,\maxima* sqrt(x1) \endmaxima*) \cup (\maxima* sqrt(x1) \endmaxima*,\infty)$ \incorrect $\left\{x\,\left|\,x\ge0,\, x \in (-\infty,\infty)\right.\right\}$ \endmultiplechoice %27 \problem % b: ["\\cot", "\\tan"]; % r: ["\\theta","(\\theta+\\pi/2)","(\\theta-\\pi/2)"]; % $\displaystyle % \frac{\maxima* a[i] \endmaxima* \theta} % {\maxima* a[j] \endmaxima* \theta\, % \maxima* if k=1 then concat(b[i], r[k]) else "" \endmaxima* } = % \maxima* if k=1 then 1 else concat("-", b[j], r[k]) \endmaxima* $ \maximacode kill(a,b,c,n); i: random(2)+1; j: remainder(i,2) + 1; a[1]:cos; a[2]:sin; b: ["\\cotfun{", "\\tanfun{"]; c: ["\\negcotfun{", "\\negtanfun{"]; k: pick(1,2,3); r: ["","+\\pi/2","-\\pi/2"]; freq: [n*%pi/2, n*%pi, (2*n+1)*%pi/2]; \endmaximacode $\displaystyle \frac{\maxima* a[i] \endmaxima* \theta} {\maxima* a[j] \endmaxima* \theta\, \maxima* if k=1 then concat(b[i],r[k],"}") else "" \endmaxima* } = \maxima* if k=1 then 1 else concat(c[j],r[k],"}") \endmaxima* $ is an identity and is true for all values of $\theta$ in the set \multiplechoice \correct $\displaystyle\left\{\theta \,\left|\, \theta \neq \maxima* if k=1 then freq[1] else if i=1 then freq[2] else freq[3] \endmaxima* ,\,n \mbox{ is an integer},\, \theta \in (-\infty,\infty)\right.\right\}$ \incorrect $\displaystyle\left\{\theta \,\left|\, \theta \neq \maxima* if k=1 then freq[2] else if i=1 then freq[3] else freq[1] \endmaxima* ,\,n \mbox{ is an integer},\, \theta \in (-\infty,\infty)\right.\right\}$ \incorrect $\displaystyle\left\{\theta \,\left|\, \theta \neq \maxima* if k=1 then freq[3] else if i=1 then freq[1] else freq[2] \endmaxima* ,\,n \mbox{ is an integer},\, \theta \in (-\infty,\infty)\right.\right\}$ \incorrect $\displaystyle\left\{\theta \,\left|\, -\infty < \theta < \infty \right.\right\}$ \incorrect $(0,2\pi)$ \endmultiplechoice \endproblemset
© TTU Mathematics