Generating...                               ibee2025_n1

  1. Find $\displaystyle \int {{{1}\over{x\,\sqrt{\ln x}}}}{\;dx}$ by substituting $\displaystyle u=\ln x$

    $\displaystyle
\int {e^{u}}{\;du}
= x + C$ $\displaystyle
\int {{{1}\over{u^{{{3}\over{2}}}}}}{\;du}
= -{{2}\over{\sqrt{\ln x}}} + C$ $\displaystyle
\int {{{1}\over{\sqrt{u}}}}{\;du}
= 2\,\sqrt{\ln x} + C$ $\displaystyle
-{{\int {u}{\;du}}\over{2}}
= -{{\left(\ln x\right)^2}\over{4}} + C$

  2. Find $\displaystyle \int {\ln x}{\;dx}$ by using integration by parts.

    $\displaystyle x\,\ln x-x + C$ $\displaystyle 2\,\sqrt{x}\,\ln x-4\,\sqrt{x} + C$ $\displaystyle {{x^3\,\ln x}\over{3}}-{{x^3}\over{9}} + C$ $\displaystyle {{x^2\,\ln x}\over{2}}-{{x^2}\over{4}} + C$ $\displaystyle -{{\ln x}\over{x}}-{{1}\over{x}} + C$ $\displaystyle {{2\,x^{{{3}\over{2}}}\,\ln x}\over{3}}-{{4\,x^{{{3}\over{2}}}
}\over{9}} + C$

  3. Find $\displaystyle \int {e^{x}\,\sqrt{e^{x}+1}}{\;dx}$ by substituting $\displaystyle u=e^{x}+1$

    $\displaystyle
-\int {\sqrt{u}}{\;du}
= -{{2\,\left(e^{x}+1\right)^{{{3}\over{2}}}}\over{3}} + C$ $\displaystyle
\int {{{1}\over{\sqrt{u}}}}{\;du}
= 2\,\sqrt{e^{x}+1} + C$ $\displaystyle
\int {\sqrt{u}}{\;du}
= {{2\,\left(e^{x}+1\right)^{{{3}\over{2}}}}\over{3}} + C$ $\displaystyle
\int {\left(u-1\right)\,\sqrt{u}}{\;du}
= {{2\,\left(e^{x}+1\...
...}\over{2}}}}\over{5}}-{{2\,\left(e^{x
}+1\right)^{{{3}\over{2}}}}\over{3}} + C$

  4. Find $\displaystyle \int {x\,\sqrt{x^2-4}}{\;dx}$ by substituting $\displaystyle x=2\,\sec \theta$

    $\displaystyle
\int {\sec \theta}{\;d\theta}
= \ln \left(2\,\sqrt{x^2-4}+2\,x\right) + C$ $\displaystyle
8\,\int {\left(\sec \theta\right)^2\,\tan ^2\theta}{\;d
\theta}
= {{\left(x^2-4\right)^{{{3}\over{2}}}}\over{3}} + C$ $\displaystyle
2\,\int {\left(\sec \theta\right)^2}{\;d\theta}
= \sqrt{x^2-4} + C$ $\displaystyle
{{\int {{{1}\over{\sec \theta}}}{\;d\theta}}\over{4}}
= {{\sqrt{x^2-4}}\over{4\,x}} + C$

  5. Find $\displaystyle \int {{{\cos \sqrt{x}}\over{\sqrt{x}}}}{\;dx}$ by using substitution.

    $\displaystyle
2\,\cos \sqrt{x} + C$ $\displaystyle
-2\,\sin \sqrt{x} + C$ $\displaystyle
-2\,\cos \sqrt{x} + C$ $\displaystyle
2\,\sin \sqrt{x} + C$



Department of Mathematics
Last modified: 2026-02-06