e-Mathematics > Matrix Algebra

Vector Equations

Vector Equation. Given vectors

$\displaystyle \mathbf{a}_{1} =
\left[\begin{array}{cccc}
a_{11} \\
a_{21} \...
...ray}{cccc}
a_{1n} \\
a_{2n} \\
\vdots \\
a_{mn} \\
\end{array}\right],$    and $\displaystyle \mathbf{b} =
\left[\begin{array}{cccc}
b_1 \\
b_2 \\
\vdots \\
b_m \\
\end{array}\right],
$

we can construct a vector equation

$\displaystyle x_1 \mathbf{a}_{1} + \cdots + x_n \mathbf{a}_{n} = \mathbf{b} .$

with unknown scalar variables $x_1,\ldots,x_n$.

Augmented Matrix. The vector equation can be formulated by the following augmented matrix

$\displaystyle \left[\begin{array}{cccc}
a_{11} & \cdots\cdots & a_{1n} & b_1 \...
...\vdots & \vdots \\
a_{m1} & \cdots\cdots & a_{mn} & b_m
\end{array}\right]
$

If the above vector equation has a solution (or general solutions), we say that $ \mathbf{b}$ is a linear combination of $ \mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$, and write $ \mathbf{b} \in$span$ \{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\}$ in short.

EXAMPLES 2. Let $ \mathbf{a}_1 =
\left[\begin{array}{c}
1 \\
2 \\
0
\end{array}\right]$, $ \mathbf{a}_2 =
\left[\begin{array}{c}
0 \\
2 \\
2
\end{array}\right]$, and $ \mathbf{b} =
\left[\begin{array}{c}
0 \\
6 \\
4
\end{array}\right]$. Determine whether $ \mathbf{b}$ can be generated (or written) as a linear combination of $ \mathbf{a}_1$ and $ \mathbf{a}_2$.

Is $ \mathbf{b} =
\left[\begin{array}{c}
1 \\
6 \\
4
\end{array}\right]$ a linear combination of $ \mathbf{a}_1$ and $ \mathbf{a}_2$?

Geometric Description of Spanned Subsets. Let $ \mathbf{a}_1$ and $ \mathbf{a}_2$ be nonzero vectors in $ \mathbb{R}^3$. If $ \mathbf{a}_2$ is not a multiple of $ \mathbf{a}_1$ then $\mathrm{span}\{\mathbf{a}_{1}, \mathbf{a}_{2}\}$ is the plane in $ \mathbb{R}^3$ that contains $ \mathbf{a}_1$ and $ \mathbf{a}_2$. In particular the plane includes $\mathbf{b}\in\mathrm{span}\{\mathbf{a}_{1}, \mathbf{a}_{2}\}$; see the black line on the plane in the figure below. On the other hand when $\mathbf{b}\not\in\mathrm{span}\{\mathbf{a}_{1}, \mathbf{a}_{2}\}$ (that is, $ \mathbf{b}$ does not belong to $\mathrm{span}\{\mathbf{a}_{1}, \mathbf{a}_{2}\}$) the plane does not contain $ \mathbf{b}$; in the second figure the black line is not on the plane.

Image figure02b Image figure02a


© TTU Mathematics