Parametric Vector Form
Parametric Vector Form: Step 1.
Construct the augmented matrix
for the matrix equation
,
then produce a reduced echelon form (REF).
For example,
![$\displaystyle \left[\begin{array}{ccccccc}
1 & 0 & \alpha_1 & 0 & \beta_1 & 0 ...
...ta_3 & 0 & \gamma_3 \\
0 & 0 & 0 & 0 & 0 & 1 & \gamma_4
\end{array}\right]
$](img109.png)








Parametric Vector Form: Step 2.
Together with free variables, express general solutions
to
in terms of parametric vector form.
In the above example, we obtain
![$\displaystyle \left[\begin{array}{c}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5 \...
...-\beta_1 \\
-\beta_2 \\
0 \\
-\beta_3 \\
1 \\
0
\end{array}\right]
$](img116.png)
EXAMPLE 2.
Describe all solutions of
with
![$\displaystyle A =
\left[\begin{array}{ccc}
3 & 5 & -4 \\
-3 &-2 & 4 \\
6 & 1 & -8
\end{array}\right]$](img117.png)
![$\displaystyle \quad
\mathbf{b} =
\left[\begin{array}{ccc}
7 \\
-1 \\
-4
\end{array}\right]
$](img118.png)
© TTU Mathematics