e-Mathematics > Matrix Algebra [Admin]

Other Operations

Other Operations. Given an $ n\times n$ matrix (square matrix$ A$, we can define the $ k$-th power $ A^k$ of $ A$ by

$\displaystyle A^k = \underbrace{A \cdots A}_{k} .
$

Transpose of Matrix. Given an $ m\times n$ matrix $ A$, we can define the transpose $ A^T$ of $ A$. For example,

$\displaystyle \begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & ...
...ix}
a_{11} & a_{21} \\
a_{12} & a_{22} \\
a_{13} & a_{23}
\end{bmatrix}
$

In particular, $ (A^T)^T = A$.

Properties of transpose. If $ A + B$ and $ A B$ are appropriately defined, we have $ (A + B)^T = A^T + B^T$ and $ (AB)^T = B^T A^T$.

Matlab/Octave. Matlab/Octave can compute the power A^k and the transpose A' of A as follows.

> A^5

> A'

EXAMPLE 4. Let $ B =
\left[\begin{array}{ccc}
-5 & 1 & 0\\
2 &-3 & 4
\end{array}\right]$ and $ C =
\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-3 & 5 &-2 & 7
\end{array}\right]$. Compute $ B^T$ and $ C^T$.

EXAMPLE 5. Write the function rmatrix() that will create an $ n\times m$ matrix with random entries. Then create a $ 3\times 3$ matrix with random entries between $ -9$ and $ 9$.


© TTU Mathematics