e-Mathematics > Matrix Algebra

Inverse Matrix

Identity matrix. An $ n\times n$ matrix (square matrix) of the form

$\displaystyle I_n =
\begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\hdotsfor{4} \\
0 & 0 & \cdots & 1
\end{bmatrix}
$

is called the $ n\times n$ identity matrix. We simply write $ I$ when the size is clear from the content. It satisfies

$\displaystyle I A = A I = A
$

for any square matrix $ A$ of the same size.

Inverse Matrix. Let $ A$ be an $ n\times n$ matrix. If there exists a matrix $ C$ of the same size satisfying

$\displaystyle A C = I$    and $\displaystyle C A = I,
$

then $ A$ is said to be invertible, and $ C$ is called the inverse of $ A$, denoted by $ A^{-1}$. If $ A$ is not invertible, we call $ A$ a singular matrix.

Matlab/Octave. The function eye(n) generates the $ n\times n$ identity matrix. For example,

> eye(5)
creates the $ 5\times 5$ identity matrix.

EXAMPLE 1 Find $ 3\times 3$ and $ 5\times 5$ identity matrix.

EXAMPLE 2. Let $ A =
\left[\begin{array}{cc}
2 & 5 \\
-3 &-7
\end{array}\right]$ and $ C =
\left[\begin{array}{cc}
-7 &-5 \\
3 & 2
\end{array}\right]$. Then show that $ C = A^{-1}$.


© TTU Mathematics