e-Mathematics > Matrix Algebra

Properties of Inverse

2-by-2 Inverse Matrix. Let $ A = \begin{bmatrix}a & b  c & d \end{bmatrix}$ be a $ 2 \times 2$ matrix. Then we can explicitly compute the inverse

$\displaystyle A^{-1} =
\begin{bmatrix}
a & b  c & d
\end{bmatrix}^{-1}
=
\frac{1}{ad - bc}
\begin{bmatrix}
d & -b  -c & a
\end{bmatrix}
$

if $ A$ is invertible, that is, if $ ad - bc \neq 0$.

Properties of Inverse.

  1. If an $ n\times n$ matrix $ A$ satisfies “either $ A C = I_n$ or $ C A = I_n$,” then $ A$ is invertible, and has the unique inverse $ C$.

  2. When $ A$ and $ B$ are invertible, we have the following properties:

    $\displaystyle (A^{-1})^{-1} = A; \hspace{0.3in}
(AB)^{-1} = B^{-1} A^{-1}; \hspace{0.3in}
(A^T)^{-1} = (A^{-1})^T .
$

  3. If $ A$ is invertible, the equation  $ A \mathbf{x} = \mathbf{b}$ has the unique solution  $ \mathbf{x} = A^{-1} \mathbf{b}$.

Matlab/Octave. The function inv(A) computes the inverse of a matrix A, if A is invertible. Then the solution to  $ A \mathbf{x} = \mathbf{b}$ is given by inv(A) * b. Besides, Matlab/Octave has the special operator “\”, called left division, which computes the solution immediately by A \ b. In summary the following two commands give the same solution:

> inv(A) * b

> A \ b

EXAMPLES 1. Find the inverse of $ A =
\left[\begin{array}{cc}
3 & 4 \\
5 & 6
\end{array}\right]$. Then solve the following system of linear equations.

\begin{displaymath}
\left\{
\begin{array}{rrr}
3x_1 & +\,4 x_2 & = 3 \\
5x_1 & +\,6 x_2 & = 7
\end{array}
\right.
\end{displaymath}


© TTU Mathematics