e-Mathematics > Matrix Algebra

Determinant

Construction of Determinant, Part 1. For $n=2$ the determinant of $ 2 \times 2$ square matrix $ A$ (denoted by “$ {\det A}$”) is defined as

$\displaystyle \det A
= \det \begin{bmatrix}a_{11} & a_{12}  a_{21} & a_{22} \end{bmatrix}
= a_{11} a_{22} - a_{12} a_{21}
$

When $n\ge 3$ in general the determinant will be introduced recursively for an $ n\times n$ square matrix. It starts with the submatrix $ A_{ij}$ by “deleting the $ i$th row and $ j$th column” from an $ n\times n$ square matrix $ A$. Observe that $ A_{ij}$'s are $ (n-1)\times (n-1)$ square matrices. Therefore, once the construction of $ {\det A}$ is determined for $ (n-1)\times (n-1)$ matrices, we can also introduce the (i,j)-cofactor $ C_{ij}$ for $ n\times n$ $ A$ by

$\displaystyle C_{ij} = (-1)^{i+j} \det A_{ij}$    for $ i,j = 1,\ldots,n$. $\displaystyle $

Construction of Determinant, Part 2. For $n\ge 3$ the determinant $ det A$ of $ n\times n$ matrix $ A$ can be constructed recursively by

$\displaystyle \det A
= a_{11} C_{11}
+ a_{12} C_{12}
+ a_{13} C_{13}
+ \cdots + a_{1n} C_{1n} .
$

where the cofactors are calculated by applying the determinant for $ (n-1)\times (n-1)$ square matrices $ A_{ij}$'s.

In Matlab/Octave the function det(A) is called to compute the determinant for a square matrix $ A$.

EXAMPLE 1. Compute the determinant of $ A = \begin{bmatrix}
1 & 5 & -2 \\
2 & 4 &-1 \\
0 &-2 & 0
\end{bmatrix}$


© TTU Mathematics