e-Mathematics > Matrix Algebra

Vector Spaces

Vector spaces. A vector space $ V$ is a set with two operations, addition and scalar multiplication, which satisfies the following axioms (or rules):
  1. $ (\mathbf{u}+\mathbf{v})+\mathbf{w} = \mathbf{u}+(\mathbf{v}+\mathbf{w})$ for all $ \mathbf{u},\mathbf{v},\mathbf{w} \in V$
  2. $ \mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$ for all $ \mathbf{u},\mathbf{v}\in V$
  3. There exists a zero vector $ \mathbf{0} \in V$ such that $ \mathbf{u}+\mathbf{0}=\mathbf{u}$ for all $ \mathbf{u} \in V$
  4. For any $ \mathbf{u} \in V$, there exists an element $ \mathbf{v} \in V$ such that $ \mathbf{u}+\mathbf{v}=\mathbf{0}$
  5. $ a (b \mathbf{u}) = (a b) \mathbf{u}$ for all scalars $ a,b$ and $ \mathbf{u} \in V$
  6. $ 1 \mathbf{u} = \mathbf{u}$ for all $ \mathbf{u} \in V$
  7. $ a (\mathbf{u}+\mathbf{v}) = (a \mathbf{u}) + (a \mathbf{v})$ for all scalar $ a$ and $ \mathbf{u},\mathbf{v}\in V$
  8. $ (a+b) \mathbf{u} = (a \mathbf{u}) + (b \mathbf{u})$ for all scalars $ a,b$ and $ \mathbf{u} \in V$

Subspaces. If $ W$ is a subset of $ V$ and it is itself a vector space, then $ W$ is said to be a vector subspace of $ V$. In particular if $\mathbf{u} + \mathbf{v},\, a \mathbf{u} \in W$ for any scalar $ a$ and any $ \mathbf{u},\mathbf{v} \in W$ then $ W$ is a subspace of $ V$. In every vector space, $\{\mathbf{0}\}$ is a vector subspace, and is called the zero subspace. Let $ \mathbf{v}_1,\ldots,\mathbf{v}_n \in V$. Then the collection of all the linear combinations

$\displaystyle a_1\mathbf{v}_1+\dots+a_n\mathbf{v}_n
$

with scalars $ a_i$'s becomes a subspace of $ V$, denoted by

$\displaystyle \mathrm{span}\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}.
$


© TTU Mathematics