e-Mathematics > Matrix Algebra [Admin]

Homogeneous Equations

Homogeneous equations. We define the zero vector in  $ \mathbb{R}^m$ by $\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
\end{array}\right]$ (whose entries are all zero's), and denote it by $ \mathbf{0}$. Let $ A$ be an $ m\times n$ matrix, Then we can define a homogeneous equation  $ A\mathbf{x} = \mathbf{0}$. Note that it is a special case of the matrix equation $ A \mathbf{x} = \mathbf{b}$ with $ \mathbf{b} = \mathbf{0}$ in $ \mathbb{R}^m$. The homogeneous equation  $ A\mathbf{x} = \mathbf{0}$ has always the trivial solution  $ \mathbf{x} = \mathbf{0}$ in $ \mathbb{R}^n$, but may have nontrivial solutions  $ \mathbf{x} \neq \mathbf{0}$.

EXAMPLE 1. Determine whether the homogeneous system

\begin{displaymath}
\left\{
\begin{array}{rrrr}
3x_1 & +5x_2 & -4x_3 = & 0 \...
... = & 0 \\
6x_1 & + x_2 & -8x_3 = & 0
\end{array}
\right.
\end{displaymath}

has nontrivial solutions. Then describe the solution set.

Matlab/Octave. The function zeros(m,1) produces the $ m$-dimensional zero column vector.


© TTU Mathematics