e-Mathematics > Matrix Algebra

Row Operations

Rows and Columns. Let $ A = \begin{bmatrix}
1 & -2 & 1  0 & 2 & -8  -4 & 5 & 9
\end{bmatrix}$ be a matrix. Then $ [\: 1\: {-2}\:\: 1\:]$, $ [\:0 \:\:2 \:{-8} \:]$, and $ [\:{-4} \:\:5 \:\:9 \:]$ are respectively called the first, the second, and the third row, and denoted by $ R_1$, $ R_2$, and $ R_3$. Similarly $ \begin{bmatrix}1  0  -4 \end{bmatrix}$, $ \begin{bmatrix}-2  2  5 \end{bmatrix}$, and $ \begin{bmatrix}1  -8  9 \end{bmatrix}$ are respectively called the first, the second, and the third column of the matrix $ A$.

Row Operatoins. The following three basic row operations are used to systematically produce a reduced echelon form:

  1. Replacement: $ k \times R_i + R_j \to R_j$ (add a multiple of the $ i$-th row by $ k$ to the $ j$-th row)
  2. Interchange: $ R_i \leftrightarrow R_j$ (interchange the $ i$-th row and the $ j$-th row)
  3. Scaling: $ k \times R_i \to R_i$ (multiply the $ i$-th row by $ k$)
Given a matrix A in Matlab/Octave, the above three row operations are carried out as follows:
  1. A(j,:) = A(j,:) + k * A(i,:)
  2. A([j,i],:) = A([i,j],:)
  3. A(i,:) = k * A(i,:)


© TTU Mathematics