e-Mathematics > Matrix Algebra [Admin]

Eigenvectors and Eigenvalues

Eigenvectors and eigenvalues. Let $ A$ be an $ n\times n$ square matrix, and let $ I$ be the $ n\times n$ identity matrix. Suppose that $ \lambda$ be a scalar, and that the matrix equation

$\displaystyle A \mathbf{v} = \lambda\mathbf{v}
$

has nontrivial solutions. Then the scalar $ \lambda$ is called an eigenvalue of $ A$, and a nontrivial solution  $ \mathbf{v}$ is an eigenvector associated with $ \lambda$.

Diagonal matrix. Let $ \lambda_1,\ldots,\lambda_n$ be scalars. Then the $ n\times n$ square matrix

$\displaystyle D =
\begin{bmatrix}
\lambda_1 & 0 & \cdots & 0 \\
0 & \lambda_2 & \cdots & 0 \\
\hdotsfor{4} \\
0 & 0 & \cdots & \lambda_n
\end{bmatrix}
$

is called the diagonal matrix with diagonal entries  $ \lambda_1,\ldots,\lambda_n$.

Matlab/Octave. The function diag(v) with column vector v returns the diagonal matrix $ D$ with diagonal entries given by the vector v. The function eig(A) returns a vector containing eigenvalues of $ A$. The command

[V,D] = eig(A)
returns a diagonal matrix $ D$ with eigenvalues on diagonal entries, and a matrix $ V$ whose column vectors are the corresponding eigenvectors.

EXAMPLE 1. Each of the matrices below answer the following questions: (a) Find the eigenvalue corresponding to the eigenvector $ \mathbf{v}$. (b) Corresponding to the eigenvalue in (a), find all the eigenvectors.

  1. $ A = \begin{bmatrix}
1 & 6 \\
5 & 2
\end{bmatrix}$ with $ \mathbf{v} = \begin{bmatrix}6  -5 \end{bmatrix}$
  2. $ A = \begin{bmatrix}
4 &-1 & 6 \\
2 & 1 & 6 \\
2 &-1 & 8
\end{bmatrix}$ with any vector $ \mathbf{v} \in$span$ \left\{
\begin{bmatrix}1  2  0 \end{bmatrix},
\begin{bmatrix}-3  0  1 \end{bmatrix}
\right\}$


© TTU Mathematics