e-Mathematics > Matrix Algebra

Eigenspace

Eigenspace. Given an eigenvalue $ \lambda$, the corresponding eigenvector $ \mathbf{x}$ must satisfy the homogeneous equation

$\displaystyle (A - \lambda I)\mathbf{x} = \mathbf{0}
$

Thus, the null space of  $ (A - \lambda I)$ represents the collection of eigenvalues corresponding to $ \lambda$, and $\mathrm{null}\,(A - \lambda I)$ is called the eigenspace. The dimension of the eigenspace $\mathrm{null}\,(A - \lambda I)$ is called the geometric multiplicity of the eigenvalue $ \lambda$.

EXAMPLE 2. Find a basis for the eigenspace corresponding to the value $ \lambda$ in each of the following.

  1. $ A = \begin{bmatrix}
1 & 2 & 2 \\
3 &-2 & 1 \\
0 & 1 & 1
\end{bmatrix}$ with $ \lambda = 3$.
  2. $ A = \begin{bmatrix}
1 & 0 &-1 \\
1 &-3 & 0 \\
4 &-13& 1
\end{bmatrix}$ with $ \lambda = -2$.
  3. $ A = \begin{bmatrix}
3 & 0 & 2 & 0 \\
1 & 3 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 4 \\
\end{bmatrix}$ with $ \lambda = 4$.


© TTU Mathematics