e-Mathematics > Matrix Algebra

Diagonalization

Matrix representation. Let $ A$ be an $ n\times n$ matrix, and let $ \mathbf{v}_1,\ldots,\mathbf{v}_n$ be the eigenvectors corresponding to the eigenvalues  $ \lambda_1,\ldots,\lambda_n$ satisfying the matrix equations

$\displaystyle (A - \lambda_i I) \mathbf{v}_i = \mathbf{0},$    or, equivalently $ A \mathbf{v}_i = \lambda_i \mathbf{v}_i$ for $ i=1,\ldots,n$. $\displaystyle $

Then we can define a diagonal matrix $ D$ and a matrix $ P$ respectively by

$\displaystyle D =
\begin{bmatrix}
\lambda_1 & 0 & \cdots & 0 \\
0 & \lambda_2 & \cdots & 0 \\
\hdotsfor{4} \\
0 & 0 & \cdots & \lambda_n
\end{bmatrix}
$    and $\displaystyle \quad
P = [\mathbf{v}_1  \ldots \mathbf{v}_n] .
$

Together we can summarize the matrix equations of eigenvector as

$\displaystyle A P = P D = [\lambda_1\mathbf{v}_1 \:\ldots\: \lambda_n\mathbf{v}_n] .
$

Diagonalization. If $ \mathbf{v}_1,\ldots,\mathbf{v}_n$ are linearly independent, the matrix $ P$ is invertible, and therefore, we obtain

$\displaystyle A = P D P^{-1} .
$

The matrix $ A$ is said to be diagonalizable if $ A$ has the above expression.

EXAMPLE 4. Diagonalize each of the following matrices if possible.

  1. $ A = \begin{bmatrix}
1 & 3 & 3 \\
-3 &-5 &-3 \\
3 & 3 & 1
\end{bmatrix}$
  2. $ A = \begin{bmatrix}
2 & 4 & 3 \\
-4 &-6 &-3 \\
3 & 3 & 1
\end{bmatrix}$
  3. $ A = \begin{bmatrix}
5 & 0 & 0 & 0 \\
0 & 5 & 0 & 0 \\
1 & 4 &-3 & 0 \\
-1 &-2 & 0 &-3
\end{bmatrix}$

Matlab/Octave. To find whether $ A$ is diagonalizable, we can use the command [P,D] = eig(A) and the function det(P). If det(P) returns 0, or the magnitude of $ 10^{-8}$ (for example, 1.2608e-08), $ P$ is not invertible numerically, and therefore, $ A$ is not diagonalizable.


© TTU Mathematics