e-Mathematics > Matrix Algebra

Orthogonality

Inner product. Let $ \mathbf{u}$ and $ \mathbf{v}$ be two column vectors in $ \mathbb{R}^n$. Then we can define the inner product (also referred as “dot product”) by

$\displaystyle \langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^T \mathbf{v}
= u_1v_1 + \cdots + u_nv_n
$

The inner product is the product of $ 1\times n$ matrix $ \mathbf{u}^T$ and $ n\times 1$ matrix $ \mathbf{v}$, yielding a scalar value. Since the transpose $ (\mathbf{u}^T \mathbf{v})^T$ will be the same scalar value $ \mathbf{u}^T \mathbf{v}$, we have

$\displaystyle \langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^T \mathbf{v}
...
...bf{v})^T = \mathbf{v}^T \mathbf{u}
= \langle \mathbf{v}, \mathbf{u} \rangle
$

Properties of inner product. We can summarize the properties of inner product.

  1. $ \langle \mathbf{u}, \mathbf{v} \rangle
= \langle \mathbf{v}, \mathbf{u} \rangle$ (Symmetric property)
  2. $ \langle a\mathbf{u} + b\mathbf{v}, \mathbf{w} \rangle
= a\langle \mathbf{u}, \mathbf{w} \rangle
+ b\langle \mathbf{v}, \mathbf{w} \rangle$ (Linearity property)
  3. $ \langle \mathbf{u}, \mathbf{u} \rangle \ge 0$; the equality holds if and only if $ \mathbf{u} = \mathbf{0}$.
When $ \langle \mathbf{u}, \mathbf{v} \rangle = 0$, $ \mathbf{u}$ and $ \mathbf{v}$ are said to be orthogonal.

Norm of vector. Consider the inner product of $ \mathbf{v}$ with itself

$\displaystyle \Vert\mathbf{v}\Vert^2 = \langle\mathbf{v},\mathbf{v}\rangle
= v_1^2 + \cdots + v_n^2
$

It determines the length $ \Vert\mathbf{v}\Vert$ of the vector $ \mathbf{v}$, and $ \Vert\mathbf{v}\Vert$ is called the norm of $ \mathbf{v}$. It is easy to see the scalar multiple of $ \mathbf{v}$ changes the norm exactly multiplied by the magnitude of the scalar.

$\displaystyle \Vert c\mathbf{v}\Vert = \sqrt{\langle c\mathbf{v},c \mathbf{v}\r...
...gle \mathbf{v},\mathbf{v}\rangle}
= \vert c\vert \cdot \Vert\mathbf{v}\Vert
$

A vector $ \mathbf{u}$ is called a unit vector if $ \Vert\mathbf{u}\Vert = 1$.

EXAMPLE 1. Let $ \mathbf{u} =
\left[\begin{array}{c}
1 \\
-2 \\
-4
\end{array}\right]$ and $ \mathbf{v} =
\left[\begin{array}{c}
2 \\
3 \\
-1
\end{array}\right]$ be vectors in $ \mathbb{R}^3$. Then

$\displaystyle \langle \mathbf{u}, \mathbf{v} \rangle
= (1)(2) + (-2)(3) + (-4)(-1) = 0
$

Thus, $ \mathbf{u}$ and $ \mathbf{v}$ are orthogonal. The orthogonal vectors $ \mathbf{u}$ and $ \mathbf{v}$ satisfy the pythagorean theorem:

$\displaystyle \Vert\mathbf{u} - \mathbf{v}\Vert^2
= \Vert\mathbf{u}\Vert^2 + \Vert\mathbf{v}\Vert^2
$


© TTU Mathematics