e-Mathematics > Matrix Algebra

Orthonormal Basis

Orthonormal basis. A set $ \{\mathbf{v}_1,\ldots,\mathbf{v}_k\}$ of nonzero vectors is called an orthogonal set if $ \langle\mathbf{v}_i,\mathbf{v}_j\rangle = 0$ whenever $ i \neq j$. The orthogonal set is linearly independent. Thus, it is considered a basis for the subspace spanned by the orthogonal set; in this sense, it is called an orthogonal basis. An orthogonal basis $ \{\mathbf{u}_1,\ldots,\mathbf{u}_k\}$ is called an orthonormal basis if $ \Vert\mathbf{u}_i\Vert = 1$ for all $ i$. An orthnormal basis $ \{\mathbf{u}_1,\ldots,\mathbf{u}_n\}$ of $ n$ vectors in $ \mathbb{R}^n$ becomes a basis for $ \mathbb{R}^n$. Furthermore, the $ n\times n$ matrix

$\displaystyle U = [\mathbf{u}_1,\ldots,\mathbf{u}_n]
$

is called orthogonal, and satisfies $ U^T U = I_n$. In fact, any matrix satisfying $ U^T U = I_n$ is orthogonal, and the columns of $ U$ form an orthonormal basis for $ \mathbb{R}^n$.

EXAMPLE 2. Let

$\displaystyle U =
\left[\begin{array}{rrr}
1/2 & 1/2 & 1/\sqrt{2} \\
1/2 & 1/2 & -1/\sqrt{2} \\
-1/\sqrt{2} & 1/\sqrt{2} & 0
\end{array}\right]
$

be a $ 3\times 3$ square matrix. Then show that $ U$ is an orthogonal matrix.

EXAMPLE 3. Let $ \mathbf{v}_1 =
\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]$, $ \mathbf{v}_2 =
\left[\begin{array}{c}
0 \\
1 \\
2
\end{array}\right]$, and $ \mathbf{v}_3 =
\left[\begin{array}{c}
-5 \\
-2 \\
1
\end{array}\right]$ be orthogonal vectors in $ \mathbb{R}^3$. Construct the orthonormal basis $ \mathbf{u}_1$, $ \mathbf{u}_2$, and $ \mathbf{u}_3$, and the corresponding orthogonal matrix $ U$.


© TTU Mathematics