e-Mathematics > Matrix Algebra

Orthogonal Projection

Orthogonal projection. The inner product $ \langle\mathbf{x},\mathbf{y}\rangle$ is viewed as $ \Vert\mathbf{x}\Vert\cdot\Vert\mathbf{y}\Vert\cos\theta$ where $ \theta$ is referred as the angle between $ \mathbf{x}$ and $ \mathbf{y}$. In particular when $ \mathbf{u}$ is a unit vector $ \langle\mathbf{u},\mathbf{y}\rangle = \Vert\mathbf{y}\Vert\cos\theta$ becomes the length of the adjacent side of the right triangle as shown below.
Image projection01
Then $ \langle\mathbf{u},\mathbf{y}\rangle \mathbf{u}$ becomes the adjacent vector, and called the orthogonal projection of $ \mathbf{y}$ onto $ \mathbf{u}$.

Projection and linear combination. We begin with any nonzero vector $ \mathbf{x}$, and normalize it to the unit vector $ \mathbf{u} = \mathbf{x}/\Vert\mathbf{x}\Vert$. Then we define the projection onto $ \mathbf{x}$ by

$\displaystyle \hat{\mathbf{y}} = \dfrac{\langle\mathbf{x},\mathbf{y}\rangle}{\langle\mathbf{x},\mathbf{x}\rangle} \mathbf{x}
$

Observe that $ \langle\mathbf{y}-\hat{\mathbf{y}}, \mathbf{x}\rangle = 0$; thus, the vector $ \mathbf{y}-\hat{\mathbf{y}}$ is orthogonal to $ \mathbf{x}$.

Let $ \{\mathbf{v}_1,\ldots,\mathbf{v}_k\}$ be an orthogonal set, and let $ W$ be the subspace spanned by $ \mathbf{v}_1, \ldots, \mathbf{v}_k$. Then we can introduce the projection of $ \mathbf{y}$ onto $ W$ by

$\displaystyle \hat{\mathbf{y}}
= \dfrac{\langle\mathbf{v}_1,\mathbf{y}\rangle...
...v}_k,\mathbf{y}\rangle}{\langle\mathbf{v}_k,\mathbf{v}_k\rangle} \mathbf{v}_k
$

so that the vector $ \mathbf{y}-\hat{\mathbf{y}}$ is orthogonal to all $ \mathbf{v}_i$'s. In particular, if $ \mathbf{y}\in$span$ \{\mathbf{v}_1,\ldots,\mathbf{v}_k\}$, then $ \mathbf{y}-\hat{\mathbf{y}} = \mathbf{0}$ and $ \hat{\mathbf{y}}$ represents a linear combination of $ \mathbf{v}_1, \ldots, \mathbf{v}_k$.

EXAMPLE 4. Let $ \mathbf{v}_1 =
\left[\begin{array}{c}
3 \\
1 \\
1
\end{array}\right]$, $ \mathbf{v}_2 =
\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right]$, and $ \mathbf{v}_3 =
\left[\begin{array}{c}
-1/2 \\
-2 \\
7/2
\end{array}\right]$ be vectors in $ \mathbb{R}^3$. Show that $ \mathbf{v}_1$, $ \mathbf{v}_2$, and $ \mathbf{v}_3$ forms an orthogonal basis for $ \mathbb{R}^3$. Express $ \mathbf{y} =
\left[\begin{array}{c}
6 \\
1 \\
-8
\end{array}\right]$ as a linear combination of the basis.


© TTU Mathematics