Generating...                               part2_n14

  1. The graph of the system of equations \begin{displaymath}\begin{cases}
x-2\,y=3 \\ [1ex]
6\,y+3\,x=9
\end{cases}\end{displaymath} consists of

    two lines intersecting where x = 3

    one line

    two distinct parallel lines

    two lines intersecting where y = 3

    two lines intersecting where x = 3

  2. The inequality $\displaystyle x^2-7\,x<8$ is equivalent to

    −1 < x < 8

    x <  − 1 or x > 8

    −7 < x < 1

    −8 < x < 1

    −1 < x < 7

  3. If $x>0$ and $y>0$, then $\sqrt{ 8 \sqrt{ 81
x^{ 10} y^{ 6}}}$ =

    $\displaystyle 18\,x^2\,y\,\sqrt{x\,y}$

    $\displaystyle 3\,2^{{{3}\over{2}}}\,x^2\,y\,\sqrt{x\,y}$

    $\displaystyle 3\,x^5\,y^3$

    $\displaystyle 18\,x^5\,y^5$

    $\displaystyle 9\,2^{{{3}\over{2}}}\,x^2\,y\,\sqrt{x\,y}$

  4. $\displaystyle
\frac{1}{ 4 + \sqrt{7}}$ =

    $\displaystyle
\frac{ 4 + \sqrt{7}}
{ 9} $

    $\displaystyle
\frac{ 4 + \sqrt{7}}
{ 23} $

    $\displaystyle
\frac{ 4 - \sqrt{7}}
{ 23} $

    $-4 + \sqrt{7} $

    $\displaystyle
\frac{ 4 - \sqrt{7}}
{ 9} $

  5. The graph of $\displaystyle y=2\,x^2-3\,x$ is symmetric with respect to the line

    $\displaystyle y={{3}\over{4}}$

    $\displaystyle x={{3}\over{4}}$

    $\displaystyle x=-{{3}\over{4}}$

    $\displaystyle x={{3}\over{2}}$

    $\displaystyle y=-{{3}\over{4}}$

  6. An equation of the line passing through ( 1 , −2 ) having slope $\displaystyle -{{1}\over{4}}$ is

    −4y − x = −7

    −4y − x = 7

    −4y − x = 9

    4y − x = −7

    4y − x = 7

  7. $\displaystyle
{{x+1}\over{x^2-9}} \times
{{16\,x-48}\over{4\,x+4}} $ = ?

    $\displaystyle {{4}\over{x^2-9}}$

    $\displaystyle {{4}\over{x+3}}$

    $\displaystyle {{16}\over{x+3}}$

    $\displaystyle {{8}\over{x-3}}$

    $\displaystyle {{4}\over{x-3}}$



Department of Mathematics
Last modified: 2025-09-14