Generating...                               part2_n6

  1. The graph of $\displaystyle y=3\,x^2+5\,x+44$ is symmetric with respect to the line

    $\displaystyle x=-{{5}\over{6}}$

    $\displaystyle y=-{{5}\over{6}}$

    $\displaystyle x={{5}\over{6}}$

    $\displaystyle y={{5}\over{6}}$

    $\displaystyle x=-{{5}\over{3}}$

  2. $\displaystyle
\frac{1}{ -3 + \sqrt{7}}$ =

    $3 + \sqrt{7} $

    $\displaystyle
\frac{ -3 - \sqrt{7}}
{ 16} $

    $\displaystyle
\frac{ -3 + \sqrt{7}}
{ 16} $

    $\displaystyle
\frac{ -3 - \sqrt{7}}
{ 2} $

    $\displaystyle
\frac{ -3 + \sqrt{7}}
{ 2} $

  3. The graph of the system of equations \begin{displaymath}\begin{cases}
4\,x-8\,y=2 \\ [1ex]
24\,y+12\,x=6
\end{cases}\end{displaymath} consists of

    two lines intersecting where $\displaystyle y={{1}\over{2}}$

    one line

    two distinct parallel lines

    two lines intersecting where x = 2

    two lines intersecting where $\displaystyle x={{1}\over{2}}$

  4. The inequality $\displaystyle x^2-8\,x<9$ is equivalent to

    −1 < x < 8

    −9 < x < 1

    x <  − 1 or x > 9

    −8 < x < 1

    −1 < x < 9

  5. An equation of the line passing through ( 3 , −1 ) having slope $\displaystyle -{{1}\over{4}}$ is

    4y − x = 1

    −4y − x = 7

    4y − x = −1

    −4y − x = −1

    −4y − x = 1

  6. If $x>0$ and $y>0$, then $\sqrt{ 8 \sqrt{ 16
x^{ 8} y^{ 10}}}$ =

    $\displaystyle 8\,x^4\,y^4$

    $\displaystyle 8\,x^2\,y^{{{5}\over{2}}}$

    $\displaystyle 2^{{{5}\over{2}}}\,x^2\,y^{{{5}\over{2}}}$

    $\displaystyle 2\,x^4\,y^5$

    $\displaystyle 2^{{{7}\over{2}}}\,x^2\,y^{{{5}\over{2}}}$

  7. $\displaystyle
{{x+1}\over{x^2-9}} \times
{{16\,x-48}\over{4\,x+4}} $ = ?

    $\displaystyle {{4}\over{x+3}}$

    $\displaystyle {{4}\over{x^2-9}}$

    $\displaystyle {{8}\over{x-3}}$

    $\displaystyle {{16}\over{x+3}}$

    $\displaystyle {{4}\over{x-3}}$



Department of Mathematics
Last modified: 2025-05-04