Generating...                               part2_n16

  1. If $x>0$ and $y>0$, then $\sqrt{ 64 \sqrt{ 16
x^{ 8} y^{ 6}}}$ =

    $\displaystyle 32\,x^2\,y^{{{3}\over{2}}}$

    $\displaystyle 16\,x^4\,y^4$

    $\displaystyle 16\,x^2\,y^{{{3}\over{2}}}$

    $\displaystyle 2\,x^4\,y^3$

    $\displaystyle 16\,x^2\,y^{{{3}\over{2}}}$

  2. $\displaystyle
{{x-1}\over{x^2-16}} \times
{{8\,x-32}\over{4\,x-4}} $ = ?

    $\displaystyle {{2}\over{x-4}}$

    $\displaystyle {{4}\over{x-4}}$

    $\displaystyle {{2}\over{x+4}}$

    $\displaystyle {{2}\over{x^2-16}}$

    $\displaystyle {{8}\over{x+4}}$

  3. The graph of $\displaystyle y=-3\,x^2-16\,x+23$ is symmetric with respect to the line

    $\displaystyle x=-{{16}\over{3}}$

    $\displaystyle x=-{{8}\over{3}}$

    $\displaystyle y=-{{8}\over{3}}$

    $\displaystyle y={{8}\over{3}}$

    $\displaystyle x={{8}\over{3}}$

  4. The graph of the system of equations \begin{displaymath}\begin{cases}
8\,y-4\,x=2 \\ [1ex]
-24\,y-12\,x=6
\end{cases}\end{displaymath} consists of

    two lines intersecting where x = 2

    two lines intersecting where $\displaystyle y=-{{1}\over{2}}$

    two lines intersecting where $\displaystyle x=-{{1}\over{2}}$

    two distinct parallel lines

    one line

  5. The inequality $\displaystyle x^2-3\,x<4$ is equivalent to

    −3 < x < 1

    x <  − 1 or x > 4

    −1 < x < 3

    −4 < x < 1

    −1 < x < 4

  6. $\displaystyle
\frac{1}{ -5 + \sqrt{11}}$ =

    $5 + \sqrt{11} $

    $\displaystyle
\frac{ -5 + \sqrt{11}}
{ 36} $

    $\displaystyle
\frac{ -5 - \sqrt{11}}
{ 14} $

    $\displaystyle
\frac{ -5 + \sqrt{11}}
{ 14} $

    $\displaystyle
\frac{ -5 - \sqrt{11}}
{ 36} $

  7. An equation of the line passing through ( 1 , 4 ) having slope $\displaystyle {{3}\over{4}}$ is

    3x − 4y = 13

    3x − 4y = −13

    4y + 3x = −13

    3x − 4y = −19

    4y + 3x = 13



Department of Mathematics
Last modified: 2025-06-19