Generating...                               part2_n8

  1. The graph of $\displaystyle y=3\,x^2+5\,x+44$ is symmetric with respect to the line

    $\displaystyle y=-{{5}\over{6}}$

    $\displaystyle y={{5}\over{6}}$

    $\displaystyle x={{5}\over{6}}$

    $\displaystyle x=-{{5}\over{6}}$

    $\displaystyle x=-{{5}\over{3}}$

  2. The graph of the system of equations \begin{displaymath}\begin{cases}
4\,y-2\,x=1 \\ [1ex]
-12\,y-6\,x=3
\end{cases}\end{displaymath} consists of

    one line

    two lines intersecting where x = 1

    two lines intersecting where $\displaystyle y=-{{1}\over{2}}$

    two distinct parallel lines

    two lines intersecting where $\displaystyle x=-{{1}\over{2}}$

  3. If $x>0$ and $y>0$, then $\sqrt{ 27 \sqrt{ 256
x^{ 6} y^{ 8}}}$ =

    $\displaystyle 4\,x^3\,y^4$

    $\displaystyle 4\,3^{{{3}\over{2}}}\,x^{{{3}\over{2}}}\,y^2$

    $\displaystyle 48\,x^{{{3}\over{2}}}\,y^2$

    $\displaystyle 48\,x^3\,y^3$

    $\displaystyle 16\,3^{{{3}\over{2}}}\,x^{{{3}\over{2}}}\,y^2$

  4. $\displaystyle
{{x+4}\over{x^2-16}} \times
{{8\,x-32}\over{4\,x+16}} $ = ?

    $\displaystyle {{2}\over{x^2-16}}$

    $\displaystyle {{8}\over{x+4}}$

    $\displaystyle {{4}\over{x-4}}$

    $\displaystyle {{2}\over{x+4}}$

    $\displaystyle {{2}\over{x-4}}$

  5. $\displaystyle
\frac{1}{ 4 + \sqrt{2}}$ =

    $\displaystyle
\frac{ 4 - \sqrt{2}}
{ 18} $

    $-4 + \sqrt{2} $

    $\displaystyle
\frac{ 4 + \sqrt{2}}
{ 14} $

    $\displaystyle
\frac{ 4 + \sqrt{2}}
{ 18} $

    $\displaystyle
\frac{ 4 - \sqrt{2}}
{ 14} $

  6. An equation of the line passing through ( 4 , −4 ) having slope $\displaystyle -{{1}\over{4}}$ is

    4y − x = −12

    −4y − x = 12

    −4y − x = −12

    4y − x = 12

    −4y − x = 20

  7. The inequality $\displaystyle x^2-7\,x<8$ is equivalent to

    −1 < x < 8

    −8 < x < 1

    x <  − 1 or x > 8

    −7 < x < 1

    −1 < x < 7



Department of Mathematics
Last modified: 2026-02-06