
Statistical Inference using R Note #8

Statistical Inference using R

Prepare data set. You can prepare the data by downloading it from brick.txt.

”Brick Weights”

1.099

1.103

1.154

...

...

...

1.206

1.066

1.132

The first line of the file, a part of which is shown above, is called a header, represents a variable
name of the data set. To give variable names properly in the first line of the file, you should
put it in the double-quotation marks (").

Read data file. The column data directly below the variable name are the actual data which
should start from the second line. We now read the file “brick.txt” into data frame in the
R programming by using read.table() function as follows:

> BrickData <- read.table("brick.txt", header=T)

Note: “<-” in R programming is supposed to play a role of “=” as in many other computer
languages. Also, R programming environment is interactive, known as an “interpretor.” For
example, if you type “x <- 3.14”, then you can find that “x” has the value 3.14 by simply
typing “x” (then return).

Declare data frame in use. Before doing anything else, we have to declare the data frame
BrickData in use by using attach function:

> attach(BrickData)

Now we can use the variable Brick.Weights. Here, the spaces (’ ’) in “brick.txt” are replaced
with the periods (’.’) inside the R programming. To see what variables are available, use names

function as follows:

> names(BrickData)

[1] "Brick.Weights"

Use variable name in data frame. To calculate sample statistics, call the summary() com-
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mand with variable name Brick.Weights.

> summary(Brick.Weights)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.874 1.083 1.110 1.111 1.140 1.257

Note that the sample size cannot be found from the summary() command. To find out the data
size, use the length() command.

> length(Brick.Weights)

[1] 125

Use graphics for data exploration. To draw the histogram, we can use hist function as
follows:

> hist(Brick.Weights)

We can change the “number of bands” by assigning the number to breaks in hist function as
follows:

> hist(Brick.Weights, breaks=10)

Note: “breaks=10” is an optional argument. The argument is not necessarily specified, and it
is set automatically if it is not given.

Use graphics, continued. We can also add a “color” and a “main title” as follows:

> hist(Brick.Weights, breaks=10, col="gray",

main="Brick Weights in kg")

We can draw the boxplot by using boxplot function:

> boxplot(Brick.Weights, col="green", main="Brick

Weights in kg")

QQ normal plot. The quantile-quantile normal plot (QQ normal plot) is one of the graphical
methods to assess a fit of the data to a normal distribution.

> qqnorm(Brick.Weights, datax=T)

The values at the x-axis shows data (specified by datax=T), and the values at the y-axis cor-
respond the quantiles from the standard normal distribution. For example, the values between
-1.0 and 1.0 at the vertical axis consist of approximately 68% of the entire values, which cor-
responds to the sample data between µ − σ and µ + σ (at the x-axis) if the data are normally
distributed. Thus, the straight line of plots indicate a fit to a normal distribution.

> qqline(Brick.Weights, datax=T,col=’green’)
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Statistical inference. The hypothesis testing for population mean µ can be done by the
t.test command. The t.test command calculate the p-value accordingly as

(a) HA : µ 6= µ0 (if alternative="two.sided" is specified);

(b) HA : µ > µ0 (if alternative="greater" is specified);

(c) HA : µ < µ0 (if alternative="less" is specified).

For example, if we construct the hypothesis testing problem

H0 : µ = 1.1 versus HA : µ > 1.1

then the t.test command must include the options mu=1.1 and alternative="greater". The
t.test command will return the following output on the display.

Statistical inference, output.

> t.test(Brick.Weights, mu=1.1, alternative="greater")

t = 2.2227, df = 124, p-value = 0.01402

alternative hypothesis: true mean is greater than 1.1

95 percent confidence interval:

1.102680 Inf

sample estimates:

mean of x

1.110536

The above result indicates that (i) t-statistic is 2.2227, (ii) p-value is 0.01402, and (iii) 95%
one-sided confidence interval is (1.102680,∞). Then, we can reject H0 with significance level
0.05, but we cannot reject H0 with significance level 0.01. Thus, there is some evidence that the
average brick weight is more than 1.1, but the evidence is modestly significant.

Statistical inference, continued. When you want the 99% two-sided confidence interval
instead of the default 95% one-sided confidence interval, we can use the option conf.level=0.99

together with alternative="two.sided" in the t.test command.

> t.test(Brick.Weights, mu=1.1, alternative="two.sided", conf.level=0.99)

..........

..........

99 percent confidence interval:

1.098135 1.122937

This gave the 99% two-sided confidence interval (1.098135, 1.122937) for the population mean
of brick weight.
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Inference on Paired Data

Paired experiment. A researcher is interested in how a new class of drug treating a patient
actually affects the patient’s heart rate reduction. The pairs of heart rate reduction

(X1, Y1), . . . , (Xn, Yn)

of n participants under the standard drug and after taking the new drug are measured. The
data file “heart.csv” of heart rate reductions is prepared in the “comma-separated values”
(csv).

Patient, StdDrug, NewDrug

1, 28.5, 34.8

2, 26.6, 37.3

...

...

40, 40.1, 40.8

Read data set into R. We can read the csv file by using raed.csv(), and declare the use of
data frame HeartData by attach().

> HeartData <- read.csv("heart.csv")

> attach(HeartData)

The summary command will show you the variable names and their summary statistics. These
variable names are Patient, StdDrug and NewDrug as indicated in the output below.

> summary(HeartData)

Patient StdDrug NewDrug

Min. : 1.00 Min. :21.60 Min. :22.40

1st Qu.:10.75 1st Qu.:27.45 1st Qu.:30.80

Median :20.50 Median :32.00 Median :34.25

Mean :20.50 Mean :31.18 Mean :33.84

...

Graphical presentations. Here we need the boxplot for each of StdDrug and NewDrug to
compare the two samples graphically. The boxplot command will create the two boxplots in
one figure.

> boxplot(StdDrug, NewDrug, names=c("Standard

Drug", "New Drug"), col="gray", ylab="Heart

rate reductions", main="Boxplots for Heart Rate

Reductions")
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Statistical inference. The paired sample test can be done by the t.test() command with
the option paired=T. Suppose that we want to test

H0 : µ1 = µ2 versus HA : µ1 < µ2

where µ1 and µ2 are the true means of heart rate reductions with the standard drug and the
new drug, respectively.

> t.test(StdDrug, NewDrug, alternative="less", paired=T)

t = -4.5016, df = 39, p-value = 2.974e-05

alternative hypothesis: true difference in means is less than 0

95 percent confidence interval:

-Inf -1.661287

sample estimates:

mean of the differences

-2.655

Statistical inference, continued. The output in the previous page shows that (i) t-statistic is
−4.5016, (ii) p-value is 2.974×10−5, and (ii) the 95% one-sided confidence interval (−∞,−1.661287)
for the difference (µ1 − µ2). Thus, we can reject H0 with significance level 0.01. To obtain the
99% one-sided confidence interval, add the option “conf.level=0.99” as follows.

> t.test(StdDrug, NewDrug, alternative="less",

paired=T, conf.level=0.99)

Page 5 Math 3470/December 8, 2021



Inference on Two Independent Samples Note #8

Inference on Two Independent Samples

Experimental studies. We often want to compare two independent samples. For example, a
researcher tests the difference of nerve conductivity speed between healthy persons and patients
with nerve disorder. The study considers a control group in which healthy subjects are
examined, and an experimental group in which subjects with nerve disorder are participated.
As a result of experiment, we obtain the measurements

X1, . . . , Xn

of the subjects from the control group, and the measurements

Y1, . . . , Ym

of the subjects from the experimental group.

Experimental studies, continued. It is assumed that X1, . . . , Xn and Y1, . . . , Ym are inde-
pendent and normally distributed with (µ1, σ

2
1) and (µ2, σ

2
2), respectively. Large sample sizes

(n,m ≥ 30) ensure that the tests are appropriate even if they are not normally distributed.
Then it becomes the hypothesis testing problem

H0 : µ1 = µ2 versus HA : µ1 6= µ2.

where µ1 and µ2 are the respective population means of the control and the experimental groups

Pooled test procedure. Let Sx and Sy be the sample standard deviations constructed from
X1, . . . , Xn and Y1, . . . , Ym, respectively. When it is assumed that

σ2
1 = σ2

2 = σ2

we can estimate σ2 by the pooled sample variance

S2
p =

(n− 1)S2
x + (m− 1)S2

y

n+m− 2

Then we can construct (1−α)-level confidence interval for the population mean difference µ1−µ2

by

(X̄ − Ȳ )± tα/2,n+m−2Sp

√
1
n

+ 1
m

Pooled test procedure, continued. The test statistic

T =
X̄ − Ȳ

Sp

√
1
n

+ 1
m

has the t-distribution with (n+m− 2) degrees of freedom under the null hypothesis H0. Thus,
we reject the null hypothesis H0 with significant level α when the observed value t of T satisfies
|t| > tα/2,n+m−2. Or, equivalently we can compute the p-value

p∗ = 2× P (Y ≥ |t|)
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with Y having a t-distribution with (n+m− 2) degrees of freedom, and reject H0 when p∗ < α.

General procedure. Under the null hypothesis H0, the test statistic

T =
X̄ − Ȳ√
S2
x

n
+

S2
y

m

has approximately the t-distribution with ν degree of freedom, where ν is the nearest integer to(
S2
x

n
+

S2
y

m

)2
S4
x

n2(n−1)
+

S4
y

m2(m−1)

.

Then we can construct (1−α)-level confidence interval for the population mean difference µ1−µ2

by

(X̄ − Ȳ )± tα/2,ν
√

S2
x

n
+

S2
y

m

General procedure, continued. We reject the null hypothesis H0 with significant level α
when the observed value t of T satisfies |t| > tα/2,ν . Or, equivalently we can compute the p-value

p∗ = 2× P (Y ≥ |t|)

with Y having a t-distribution with ν degrees of freedom, and reject H0 when p∗ < α.

Read data set into R. The data set of nerve conductivity speeds is prepared in a 32-by-2
table. The first column of the table represents 32 healthy subject data, and the second column
represents 27 disordered subject data. The asterisk (*) in the last 5 entries indicates that there
is a difference in the column data sizes.

Healthy Disorder

52.20 50.68

...

...

55.90 53.98

52.23 *

54.90 *

55.64 *

54.48 *

52.89 *

Read data set into R, continued. To ignore the symbol (*) in reading the data file, the
option “na.strings="*"” can be used in read.table() command. Now we read them into the
data frame NerveData as follows.
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> NerveData <- read.table("nerve.txt", header=T,

na.strings="*")

Data exploration. Declare the use of data frame (attach), and then find out the variable
names and their summary statistics (summary) as follows.

> attach(NerveData)

> summary(NerveData)

Healthy Disorder

Min. :52.20 Min. :44.86

...

The output from the summary command reveals Healthy and Disorder as the variable names.
The boxplot() will be used to compare the two samples.

> boxplot(Healthy, Disorder, names=c("Healthy", "Nerve

Disorder"), col="gray", ylab="Conductivity speeds",

main="Boxplots for Nerve conductivity speeds")

Statistical inference. The t.test() can be used again for the two independent samples.
Suppose that our hypothesis testing problem is

H0 : µ1 = µ2 versus HA : µ1 > µ2

where µ1 and µ2 are the true means of nerve conductivity speed for healthy subjects and nerve
disorder subjects, respectively.

> t.test(Healthy, Disorder, alternative="greater")

data: Healthy and Disorder

t = 10.608, df = 32.684, p-value = 2.032e-12

alternative hypothesis: true difference in means is greater than 0

95 percent confidence interval:

4.538828 NA

sample estimates:

mean of x mean of y

53.99438 48.59370

Statistical inference, continued. The result shows that (i) t-statistic is 10.608, (ii) p-value is
2.032× 10−12, and (iii) the 95% one-sided confidence interval is (4.538828,∞) for the difference
(µ1 − µ2). Thus, we can reject H0. If we wish to obtain the 99% two-sided confidence interval,
then we use “conf.level=0.99” and “alternative="two.sided"” as follows.

> t.test(Healthy, Disorder, alternative="two.sided",

conf.level=0.99)
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The default call corresponds to general procedure. If equal variances are assumed, the pooled
procedure can be used. In this case we need the option “var.equal=T”.

> t.test(Healthy, Disorder, alternative="two.sided",

conf.level=0.99, var.equal=T)

Manipulate two data frames. An engineer compares the sample of paint thicknesses (line-a.txt)
from production line A with a sample of paint thicknesses (line-b.txt) from production line B.
What conclusions should the engineer draw? Here we have two data sets in line-a.txt and
line-b.txt. They should be read into two data frames PA and PB as follows.

> PA <- read.table("line-a.txt", header=T)

> PB <- read.table("line-b.txt", header=T)

Manipulate two data frames, continued. We can find out the variable name and summary
statistics (summary) for each data frame as follows.

> summary(PA)

Paint.Thicknesses.in.mm

Min. :0.0760

...

> summary(PB)

Paint.Thicknesses

Min. :0.0230

...

It reveals that the data frame PA has the variable Paint.Thicknesses.in.mm and that the data
frame PB has the variable Paint.Thicknesses.

Manipulate two data frames, continued. In order to manipulate the two data frames PA
and PB simultaneously, we call the variables directly via

PA$Paint.Thicknesses.in.mm
PB$Paint.Thicknesses

without declaring attach. Then boxplot and t.test can be carried out as follows.

> boxplot(PA$Paint.Thicknesses.in.mm, PB$Paint.Thicknesses, names=c("Line A", "Line B"), ylab="Paint

thicknesses (mm)", main="Boxplots for Paint thickness")

Manipulate two data frames, continued.

> t.test(PA$Paint.Thicknesses.in.mm, PB$Paint.Thicknesses, alternative="two.sided")

data: PA$Paint.Thicknesses.in.mm and PB$Paint.Thicknesses

t = 2.5732, df = 154.713, p-value = 0.01102

alternative: true difference in means is not equal to 0
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95 percent confidence interval:

0.007172363 0.054576254

sample estimates:

mean of x mean of y

0.2318133 0.2009390

The result shows that the p-value for the hypthesis testing problem

H0 : µ1 = µ2 versus HA : µ1 6= µ2

is 0.01102. Thus, there is a fairly significant evidence that the paint thicknesses from production
line A and those from production line B are different.
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Simple Linear Regression

Linear regression model. Suppose that the researcher wants to find how the temperature of
factory affects the labor efficiency to unload a truck. We conduct n independent experiments
with different levels of temperature. The data set consists of the unloading time Y1, . . . , Yn
paired with the respective temperature x1, . . . , xn of the factory.

Temperature Unloading time
x1 Y1
...

...
xn Yn

Linear regression model, continued. The relationship between the explanatory variable xi
and the response variable Yi can be approximated by the simple linear regression model

Yi = β0 + β1xi + εi, for i = 1, . . . , n, (8.1)

where εi is a “random error” due to other factors of condition. The standard assumption is that
the random error terms ε1, . . . , εn are iid normally distributed random variables with common
variance σ2.

Parameter estimates. The coefficients β0 and β1 of the linear regression model (8.1) are called
the intercept and the slope parameters, respectively. The point estimates β̂0 and β̂1 of the
parameters β0 and β1 become

β̂0 = Ȳ − β̂1x̄ and β̂1 =
Sxy
Sxx

,

where the values x̄, Ȳ , Sxx, and Sxy are computed as in the following table.

Variables Mean Sum of squares

Explanatory x̄ =
1

n

n∑
i=1

xi Sxx =
n∑
i=1

(xi − x̄)2

Response Ȳ =
1

n

n∑
i=1

Yi Sxy =
n∑
i=1

(xi − x̄)(Yi − Ȳ )

Statistical properties. By constructing the residual sum of squares (RSS)

RSS =
n∑
i=1

(Yi − β̂0 − β̂1xi)2 ,

the point estimate σ̂2 of the variance σ2 becomes

σ̂2 =
RSS

n− 2
.

Then the statistics are summarized in the following table.
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Coefficient Estimate Standard error t-value

β0 β̂0 = Ȳ − β̂1x̄ S0 = σ̂

√
1

n
+

x̄2

Sxx
T0 =

β̂0
S0

β1 β̂1 =
Sxy
Sxx

S1 =
σ̂√
Sxx

T1 =
β̂1
S1

Read and declare a data set. We use the data set of unloading time.

UnloadingTime Temperature

64 52

53 68

58 64

...

To read the data set, we use the read.table.

> TimeData <- read.table("time.txt", header=T)

Declare and use data set. We declare the use of data. To see sample statistics with variable
names, we can use the summary(). Then, the first line of the output below displays the variable
names Time and Temperature.

> attach(TimeData)

> summary(TimeData)

Time Temperature

Min. :38.00 Min. :52.00

...

The plot function can be used to show the scatter plot of temperature against time.

> plot(Temperature, Time, main="Scatter plot of

temperature against time")

Statistical inference. To fit the data frame TimeData into a simple linear model, the lm

function will be used and the result must be saved in a variable. Then, the summary function
with the variable produced by the lm function can display the result.

> TimeLM <- lm(Time ∼ Temperature)

> summary(TimeLM)

...

Coefficients:

Estimate Std.Error t value Pr(>|t|)
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(Intercept) 36.1935 16.9515 2.135 0.0585 .

Temperature 0.2659 0.2383 1.116 0.2905

—

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

...

Statistical inference, continued. In finding a trend, the result shows that (i) the estimate
β̂1 of slope is 0.2659, and (ii) the p-value is 0.2905, which is insignificant. Thus, we cannot reject
the null hypothesis H0 : β1 = 0, and therefore, there is not sufficient evidence to conclude that
the unloading time depends on the temperature. And we should conclude that no relationship
has been established between the two variables. As for the intercept, the result shows that
(i) the estimate β̂0 of intercept is 36.1935, and (ii) the p-value is 0.0585, which is moderately
significant. To see the fitted line graphically, we can use the abline function. It adds the fitted
line on the scatter plot which was previously drawn.

> abline(TimeLM)

Residual analysis. To assess the fit graphically, we can use the following assortment of plots:

� Residual-Fit spread plot compares the spread of the fitted values with the spread of
the residuals.

� Normal Q-Q plot provides a visual test of the assumption that the model’s error terms
are normally distributed.

We can create these diagnostic plots by using plot function with the model variable name
TimeLM.

> plot(TimeLM, which=1)

> plot(TimeLM, which=2)
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Assignment No.8

Computer Assignment. Investigate the following statistical studies, and write a short report
on your own statistical analysis. Your report must include:

(a) sample statistics such as mean, median, and standard deviation;

(b) graphical presentations (histogram, boxplot, or scatter plot) of data;

(c) descriptions of hypothesis testing (null and alternative hypothesis);

(d) results of formal statistical inference (p-value), and your conclusions.

Study 1: Red blood cell adhesion.

Data set: bloodcell.txt

Researchers into the genetic disease sickle cell anemia are interested in how red blood cells adhere
to endothelial cells, which form the innermost lining of blood vessels. A set of 14 blood samples
are obtained, and each sample is split in half. One half of the blood sample is profuse over
an endothelial monolayer of type A and the other half of the blood sample is profused over an
endothelial monolayer of type B. The two types differs in respect to the stimulation conditions
of the endothelial cells. The data represent the number of adherent red blood cells per mm2.
Is there any evidence that the different stimulation conditions affect the adhesion of red blood
cells?

Study 2: Service times.

Data sets: afternoon.txt and morning.txt

The data set in afternoon.txt shows the service times (in second) of customers at a fast-
food restaurant who were served between 2:00 and 3:00 on a Saturday afternoon. In addition,
morning.txt shows the service times of customers at the fast-food restaurant who were served
between 9:00 and 10:00 in the morning on the same day. What do these data sets tell us about
the difference between the service times at these two times of day?

Study 3: Aerobic fitness.

Data set: vo2max.txt

The data concern the aerobic fitness of a sample of twenty male subjects collected at the
Health and Performance Sciences Laboratory at Georgia Tech. An exercising individual breathes
through an apparatus that measures the amount of oxygen in the inhaled air which is used by
the individual. The maximum value per unit time of the utilized oxygen is then scaled by the
person’s body weight to come up with a variable VO2-max, which is a general indication of the
aerobic fitness of the individual. Fit a linear regression model with VO2-max as the dependent
variable (the response variable) and age as the explanatory variable. Is it clear that on average
aerobic fitness decreases with age?

Page 14 Math 3470/December 8, 2021


