Hypergeometirc Distributions
Suppose we have a lot of size






![$\displaystyle E[X] = \dfrac{r m}{N}$](img15.png)

N = 100 m = 20 r = 10 size = 200 x = 0:r prob = dhyper(x,m,N-m,r) sample = rhyper(size,m,N-m,r) hist(sample, freq=F, breaks=seq(-0.5,r+0.5,by=1.0), ylim=c(0,max(prob)+0.1), col='green') prob.mass(x,prob,lty=2) cat(sample) cat("\n sample mean =", mean(sample)) cat("\n sample var =", var(sample)) cat("\n E[X] =", m*r/N) cat("\n Var(X) =", m*r*(N-m)*(N-r)/(N^2*(N-1)))
Programming Note. ylim=c(0,max(prob)+0.1) determines the range of y-axis. Here we need it to adjust the height so that it displays the highest value (mode) from the probability mass function.
Sample R code. You can download hyperdemo.R, and run it.
© TTU Mathematics