
Sample Space and Events
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Sample space.

The set of all possible outcomes of an experiment is called the sample

space, and is typically denoted by Ω. For example, if the outcome of an

experiment is the order of finish in a race among 3 boys, Jim, Mike and

Tom, then the sample space becomes

Ω = {(J,M,T ), (J,T ,M), (M, J,T ), (M,T , J), (T , J,M), (T ,M, J)}.

In other example, suppose that a researcher is interested in the lifetime of

a transistor, and measures it in minutes. Then the sample space is

represented by

Ω = {all nonnegative real numbers}.
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Events.

Any subset of the sample space is called an event. In the

who-wins-the-race example, “Mike wins the race” is an event, which we

denote by A. Then we can write

A = {(M, J,T ), (M,T , J)}.

In the transistor example, “the transistor does not last longer than 2500

minutes” is an event, which we denote by E . And we can write

E = {x : 0 ≤ x ≤ 2500}.
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Set operations.

Once we have events A,B, . . ., we can define a new event from these

events by using set operations—union, intersection, and complement.

The event A ∪ B, called the union of A and B, means that either A or B

or both occurs. Consider the “who-wins-the-race” example, and let B

denote the event “Jim wins the second place”, that is,

B = {(M, J,T ), (T , J,M)}.

Then A ∪ B means that “either Mike wins the first, or Jim wins the

second, or both,” that is,

A ∪ B = {(M,T , J), (T , J,M), (M, J,T )}.

The event A∩B, called the intersection of A and B, means that both A

and B occurs. In our example, A ∩ B means that “Mike wins the first

and Jim wins the second,” that is,

A ∩ B = {(M, J,T )}.
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Set operations, continued.

The event Ac , called the complement of A, means that A does not

occur. In our example, the event Ac means that “Mike does not win the

race”, that is,

Ac = {(J,M,T ), (J,T ,M), (T , J,M), (T ,M, J)}.

Now suppose that C is the event “Tom wins the race.” Then what is the

event A ∩ C? It is impossible that Mike wins and Tom wins at the same

time. In mathematics, it is called the empty set, denoted by ∅, and can

be expressed in the form

A ∩ C = ∅.

If the two events A and B satisfy A ∩ B = ∅, then they are said to be

disjoint. For example, “Mike wins the race” and “Tom wins the race”

are disjoint events.
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Axioms of Probability
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Axioms of probability.

A probability P is a “function” defined over all the “events” (that is, all

the subsets of Ω), and must satisfy the following properties:

1. If A ⊂ Ω, then 0 ≤ P(A) ≤ 1

2. P(Ω) = 1

3. If A1,A2, . . . are events and Ai ∩ Aj = ∅ for all i ̸= j then,

P(
⋃∞

i=1 Ai ) =
∑∞

i=1 P(Ai ).

Property (c) is called the “axiom of countable additivity,” which is clearly

motivated by the property:

P(A1 ∪ · · · ∪ An) = P(A1) + · · ·+ P(An)

if A1,A2, . . . ,An are mutually exclusive events. However, there is nothing

in one’s intuitive notion that requires this axiom.
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Venn diagram.

The following figure, called Venn diagram, represents the probability of

A ∩ B as shown in the red area.

The next figure now indicates the probability of A ∪ B in the red area.
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Rules of probability.

A visual illustration of Venn diagram allows us to devise the following

addition rule which is not obvious from the axioms of probability.

P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

Another rule P(A ∩ Bc) = P(A)− P(A ∩ B) can be observed from the

following figure.
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Sample space having equally likely outcomes.

When the sample space

Ω = {ω1, . . . , ωN}

consists of N outcomes, it is often natural to assume that

P({ω1}) = · · · = P({ωN}). Then we can obtain the probability of a

single outcome by

P({ωi}) =
1

N
for i = 1, . . . ,N.

Assuming this, we can compute the probability of any event A by

counting the number of outcomes in A, and obtain

P(A) =
number of outcomes in A

N
.
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Combinatorial analysis.

A problem involving equally likely outcomes can be solved by counting.

The mathematics of counting is known as combinatorial analysis. It

can be summarized in three basic methodologies:

1. Multiplication principle when individual objects are sampled with

replacement and ordered.

2. Permutations when individual objects are sampled without

replacement and ordered.

3. Combinations when a subset of individual objects (unordered) are

sampled without replacement.
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Multiplication principle.

If one experiment has m outcomes, and a second has n outcomes, then

there are m × n outcomes for the two experiments. The multiplication

principle can be extended and used in the following experiment. Suppose

that we have n differently numbered balls in an urn. In the first trial, we

pick up a ball from the urn, record its number, and put it back into the

urn. In the second trial, we again pick up, record, and put back a ball.

Continue the same procedure until the r -th trial. The whole process is

called a sampling with replacement. By generalizing the multiplication

principle, the number of all possible outcomes becomes

n × · · · × n︸ ︷︷ ︸
r

= nr .
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Example

1. How many different 7-place license plates are possible if the first 3

places are to be occupied by letters and the final 4 by numbers?

2. How many different functions f defined on {1, . . . , n} are possible if

the value f (i) takes either 0 or 1?

1. 26× 26× 26︸ ︷︷ ︸
3 letters

× 10× 10× 10× 10︸ ︷︷ ︸
4 numbers

= 175, 760, 000

2. n places have either 0 or 1. Thus, we have 2× 2× · · · × 2︸ ︷︷ ︸
n

= 2n
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Combinations and Binomial Coefficients
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Permutations.

Consider again “n balls in an urn.” In this experiment, we pick up a ball

from the urn, record its number, but do not put it back into the urn. In

the second trial, we again pick up, record, and do not put back a ball.

Continue the same procedure r -times. The whole process is called a

sampling without replacement. Then, the number of all possible

outcomes becomes

n × (n − 1)× (n − 2)× · · · × (n − r + 1)︸ ︷︷ ︸
r
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Permutations, continued.

Given a set of n different elements, the number of all the possible

“ordered” sets of size r is called r-element permutation of an

n-element set. In particular, the n-element permutation of an n-element

set is expressed as

n × (n − 1)× (n − 2)× · · · × 2× 1︸ ︷︷ ︸
n

= n!

The above mathematical symbol “n!” is called “n factorial.” We define

0! = 1, since there is one way to order 0 elements.
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Example

1. How many different 7-place license plates are possible if the first 3

places are using different letters and the final 4 using different

numbers?

2. How many different functions f defined on {1, . . . , n} are possible if

the function f takes values on {1, . . . , n} and satisfies that

f (i) ̸= f (j) for all i ̸= j?

1. Here different places must have different objects. Thus, we have

26× 25× 24︸ ︷︷ ︸
3 different letters

× 10× 9× 8× 7︸ ︷︷ ︸
4 different numbers

= 78, 624, 000

2. n places must have different numbers from 1 to n. Thus, we have

n × (n − 1)× · · · × 2× 1︸ ︷︷ ︸
n different numbers

= n!
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Combinations.

In the experiment, we have n differently numbered balls in an urn, and

pick up r balls “as a group.” Then there are

n!

(n − r)!

ways of selecting the group if the order is relevant (r -element

permutation). However, the order is irrelevant when you choose r balls as

a group, and any particular r -element group has been counted exactly r !

times. Thus, the number of r -element groups can be calculated as(
n

r

)
=

n!

(n − r)!r !
.

You should read the above symbol as “n choose r.”
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Example

1. A committee of 3 is to be formed from a group of 20 people. How

many different committees are possible?

2. From a group of 5 women and 7 men, how many different

committees consisting of 2 women and 3 men can be formed?

1.

(
20

3

)
=

20× 19× 18

3× 2× 1
= 1140

2. Here you need to apply the multiplication principle together with

combinations. (
5

2

)
︸︷︷︸

2 women

×
(
7

3

)
︸︷︷︸
3 men

= 350
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Binomial theorem.

The term “n choose r” is often referred as a binomial coefficient, because

of the following identity.

(a+ b)n =
n∑

i=0

(
n

i

)
ai bn−i .

In fact, we can give a proof of the binomial theorem by using

combinatorial analysis. For a while we pretend that “commutative law”

cannot be used for multiplication. Then, for example, the expansion of

(a+ b)2 becomes

aa+ ab + ba+ bb,

and consists of the 4 terms, aa, ab, ba, and bb. In general, how many

terms in the expansion of (a+ b)n should contain a’s exactly in i places?

The answer to this question indicates the binomial theorem.
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Assignment No.1
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Supplementary Readings.

SS: Murray R. Spiegel, John Schiller, and R. Alu Srinivasan, Probability

and Statistics 4th ed. McGraw-Hill.

Chapter 1: Random Experiments, Sample Spaces, Events, Concept

of Probability, Axioms of Probability, Some Important Theorems on

Probability, Assignment of Probabilities, Combinatorial Analysis,

Fundamental Principle of Counting, Permutations, Combinations,

Binomial Coefficient.

TH: Elliot A. Tanis and Robert V. Hogg, A Brief Course in Mathematical

Statistics. Prentice Hall.

Section 1.1–1.2

WM: Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, and

Keying Ye, Probability & Statistics for Engineers & Scientists, 9th

ed. Prentice Hall.

Section 2.1–2.5
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Problem

The world series in baseball continues until either the american league

(A) or the national league (N) wins four games. How many different

outcomes are possible if the series goes

1. four games?

2. five games?

3. six games?

4. seven games?

For example, ANNAAA means that the american league wins in six

games.
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Problem

Two six-sided dice are thrown sequentially, and the face values that

come up are recorded.

1. List the sample space Ω.

2. List the elements that make up the following events:

2.1 A = {the sum of the two values is at least 8},
2.2 B =

{the value of the first die is higher than the value of the second},
2.3 C = {the first value is 4}.

3. Assuming equally likely outcomes, find P(A), P(B), and P(C ).

4. List the events of the following events:

4.1 A ∩ C,

4.2 B ∪ C,

4.3 A ∩ (B ∪ C).

5. Again assuming equally likely outcomes, find P(A ∩ C ), P(B ∪ C ),

and P(A ∩ (B ∪ C )).
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Problem

Suppose that P(A) = 0.4, P(B) = 0.5, and P(A ∩ B) = 0.3. Then find

the following probability:

1. P(A ∪ B)

2. P(A ∩ Bc)

3. P(Ac ∪ Bc)
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Problem

A deck of 52 cards is shuffled thoroughly. What is the probability that

the four aces are all next to each other? (Hint: Imagine that you have

52 slots lined up to place the four aces. How many different ways can

you “choose” four slots for those aces? How many different ways do

you get consecutive slots for those aces?)
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Problem

Express the answer by combinations in each of the following questions:

1. How many ways are there to encode the 26-letter English alphabet

into 8-bit binary words (sequences of eight 0’s and 1’s)?

2. What is the coefficient of x3y4 in the expansion of (x + y)7 ?

3. A child has six blocks, three of which are red and three of which are

green. How many patterns can she make by placing them all in a

line?
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Problem

From a group of 5 students, Amanda, Brad, Carey, David and Eric, we

want to form a committee consisting of 3 students.

1. How many different ways to choose committee members?

2. Now suppose that Amanda and Brad refuse to serve together. Then

how many different ways to choose committee members?
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Answers
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Problem 1.

1. The series goes only four games only when AAAA or NNNN. Thus,

only two outcomes.

2. The series goes five games if □□□□A with only one N in □’s, or

□□□□N with only one A in □’s. Thus, we have 4 + 4 = 8

outcomes.

3. The series goes six games if □□□□□A with exactly two N’s in □’s,

or □□□□□N with exactly two A’s in □’s. Thus, we have(
5

2

)
+

(
5

2

)
= 20 outcomes.

4. By now you must get the idea. The answer is

(
6

3

)
+

(
6

3

)
= 40

outcomes.
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Problem 2.

1. Ω = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1),
(2, 2), . . . , (6, 6)}.
Note that (1, 2) and (2, 1) are distinct outcomes, and that the part

“. . .” should be obvious to you.

2. 2.1 A = {(2, 6), (3, 5), (3, 6), (4, 4), (4, 5), (4, 6), (5, 3), · · · , (5, 6),
(6, 2), . . . , (6, 6)}

2.2 B = {(2, 1), (3, 1), (3, 2), (4, 1), . . . , (4, 3), (5, 1), . . . , (5, 4),
(6, 1), . . . , (6, 5)}

2.3 C = {(4, 1), . . . , (4, 6)}
3. P(A) = 15

36 = 5
12 , P(B) =

15
36 = 5

12 , and P(C ) = 6
36 = 1

6 .

4. 4.1 A ∩ C = {(4, 4), (4, 5), (4, 6)}
4.2 B ∪ C = {(2, 1), (3, 1), (3, 2), (4, 1), . . . , (4, 6), (5, 1), . . . , (5, 4),

(6, 1), . . . , (6, 6)}
4.3 A ∩ (B ∪ C) = {(4, 4), (4, 5), (4, 6), (5, 3), (5, 4), (6, 2), . . . , (6, 5)}

5. P(A ∩ C ) = 3
36 = 1

12 , P(B ∪ C ) = 18
36 = 1

2 , and

P(A ∩ (B ∪ C )) = 9
36 = 1

4 .
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Problem 3.

1. P(A ∪ B) = P(A) + P(B)− P(A ∩ B) = 0.6

2. P(A ∩ Bc) = P(A)− P(A ∩ B) = 0.1

3. Draw the Venn diagram for the probability of Ac ∪ Bc , and find the

following rule.

P(Ac ∪ Bc) = 1− P(A ∩ B) = 0.7
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Problem 4.

Let Ω be the sample space of different outcomes in which four places are

chosen for aces out of 52 places, and let A be the event that four places

are located next to each other. Then the number of outcomes in Ω is(
52

4

)
= 270, 725, and the number of outcomes in A is just 49. Thus, the

probability is calculated as
49

270725
≈ 0.0002 (which is very small).
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Problem 5.

1.

(
28

26

)
=

(
256

26

)
2.

(
7

3

)
3.

(
6

3

)
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Problem 6.

1.

(
5

3

)
= 10

2. There are three possible outcomes in which Amanda and Brad serve

together. Thus, by removing these three cases, we have 10− 3 = 7

different ways to form a committee.
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