Discrete Probability Distributions
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andom variables

=T
A numerically valued map X of an outcome w from a sample space Q to

the real line R
X Q—=R:w— X(w)

is called a random variable (r.v.), and usually determined by an
experiment. We conventionally denote random variables by uppercase
letters X, Y, Z, U, V, etc., from the end of the alphabet. In particular, a
discrete random variable is a random variable that can take values on a

finite set {a1, an, ..., an} of real numbers (usually integers), or on a

countably infinite set {a;, a, a3, ...}. The statement such as “X = a;" is

an event since [x=1}={wedt® xwy=1}
{w g X(w) = ai} = {Htg, T, 1eH )

is a subset of a sample space 2.






requen

cy functio

Foaople o =8 od haadls

1 Ye
P T e fr=ad = {ur1, 7, TR )
1
3
] I/

Tomiir i veel number
We can consider the probability of the event {X = a;}, denoted by
P(X = a;). The function Plix-2.))
Hof LT o i {x=e)
pled) = P =a) - s =
over the possible values of X, say a1, as, . .., is called a frequency

function, or a probability mass function. The frequency function p

——

must satisfy

where the sum is over the possible values of X. The frequency function
will completely describe the probabilistic nature of random variable.






Joint distributions of discrete random variables.

When two discrete random variables X and Y are obtained in the same
experiment, we can define their joint frequency function by

p(a),B)) = P(X =@, Y =@)) = Pt x=a.1ni1= ;1)

where a;, as,... and by, by, ... are the possible values of X and Y,
respectively. The marginal frequency function of X, denoted by px,

can be calculated by —P(1x=n:l)

px(ai) = P(X = a;) = Zp(a;, b;),

where the sum is over the possible values by, by, ... of Y. Similarly, the
marginal frequency function py(b;) = >, p(ai, bj) of Y is given by
summing over the possible values ap, a,, ... of X.
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Example

An experiment consists of throwing a fair coin three times. Let X be
the number of heads and let Y be the number of heads before the first
tail.

TT | & l; Oltiam ¢S

1. List the sample space Q.= {nn, -
2. Describe the events {X =0}, {Y =0}, and {X =0, Y = 0}.

3. Find the frequency function p for X and Y. And compute the joint
frequency p(0,0).
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Example

An experiment consists of throwing a fair coin three times. Let X be
the number of heads, and let Y be the number of heads before the first
tail.

1. List the sample space Q.

2. Describe the events {X =0}, {Y =0}, and {X =0, Y = 0}.

3. Find the frequency function p for X and Y. And compute the joint
frequency p(0, 0).

1. Q = {HHH, HHT,HTH, THH, HTT, THT, TTH, TTT}

2. {X =0} = {TTT}, {Y =0} = {TTT, THH, THT, TTH}, and
{X =0, Y:O}:{TTT}

3. px(0) = gr Px_(l) gr px(2) = 3; px(3) = 3.

py(0) = 3: py(1) = Z: pv(2) I% ,(3) = 3-
p(0,0) = P(X =0,Y =0) =



Cumulative distribution functio
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Another useful function is the cumulative distribution function (cdf),
and it is defined by

F(x) = P(X < x), —00 < x < 00.

The cdf of a discrete r.v. is a nondecreasing step function. It jumps
wherever p(x) > 0, and the jump at a; is p(a;). cdf’s are usually denoted
by uppercase letters, while frequency functions are usually denoted by
lowercase letters.



Independent random variables.
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Let X and Y be discrete random variables with joint frequency function
p(x,y). Then X and Y are said to be independent, if they satisfy

p(x,y) = px(x)py(y)
e —

for all possible values of (x,y). ]
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Example

Mthe same experiment of throwing a fair coin three times. Let
X be the number of heads, and let Y be the number of heads before
1 1 r| v e bl
the first tail. F;GI( <x) Randine ¢
|

e ble

(1) Find the cdf F(x) for X at ¥= —1,0,1,2,2.5,3, 4.5,
2. Are X and Y independent?
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Example

Continue the same experiment of throwing a fair coin three times. Let
X be the number of heads, and let Y be the number of heads before
the first tail.

1.
2.

Find the cdf F(x) for X at x = —1,0,1,2,2.5,3,4.5.
Are X and Y independent?

F(-1)=0, F(0) =3, F(1)=13, F(2) = F(2.5) = §, and
F(3) = F(45) =1.

Since px(0) = 3, py(0) = 3, and p(0,0) = g, we find that
p(0,0) # px(0)py(0). Thus, X and Y are not independent.



Bernoulli Trials and Binomial Distributions
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Bernoulli trials.

A Bernoulli random variable X takes value only on 0 and 1. It is

R e e e B o T
determined by the parameter p (which represents the probability that

X =1), and the frequency function is given by
ja=eb= A

1

Plx=1) p(l):pé/"—‘y velue bezicer 0 aud |

p(0)=1—p = 1-pix=1)

Plx=o)

I

Fresesy erenk

If Ais the event that an experiment results in a “success,” then the

indicator random variable, denoted by /4, takes the value 1 if A occurs
and the value 0 otherwise.

1 if we A
Xy =la(w) =
0  otherwise (i.e., w € A)= we A°

Then /4 is a Bernoulli random variable with “success” probability
p = P(A). We will call such experiment a Bernoulli trial.

10
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Binomial distribution.

Xiy o X

If we have n independent Bernoulli tri%ch with a success probability
p, then the probability that there will be exactly k successes is given by

n
PX=%) = p(k) = <k>pk(1 —p)" kKl k=0,1,...,n.

The above frequency function p(k) is called a binomial distribution

with parameter (n, p).
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Example

Five fair coins are flipped independently. Find the frequency function of

the number of heads obtained.
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Example

Five fair coins are flipped independently. Find the frequency function of
the number of heads obtained.

The number X of heads represents a binomial random variable with
parameter n =5 and p = % Thus, we obtain

()

12
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Example

A company has known that their screws is defective with probability

_0.01. They sell the screws in packages of@O ) and are planmng a

/ money—back guarantee

I
n

1. at most one of the 10 screws is defective, and they replace it if a

customer find more than one defective screws, or

2. they replace it even if there is only one defective.

For each of the money-back guarantee plans above what proportion of

packages sold must be replaced?
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Example

A company has known that their screws is defective with probability
0.01. They sell the screws in packages of 10, and are planning a
money-back guarantee

1. at most one of the 10 screws is defective, and they replace it if a
customer find more than one defective screws, or

2. they replace it even if there is only one defective.

For each of the money-back guarantee plans above what proportion of
packages sold must be replaced?

The number X of defective screws in a package represents a binomial
random variable with parameter p = 0.01 and n = 10.

1. P(X >2)=1-p(0) — p(1) =
1 - (19)(0.01)°(0.99)* — ()

(0.01)1(0.99)° ~ 0.004
2. PX>1)=1-p(0)=1-(¥)

01)*
(0.01)°(0.99)™° ~ 0.096

13



Relation between Bernoulli trials and binomial random variable.

_ <ol Sectery
%= |
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A binomial random variable can be expressed in terms of n Bernoulli
random variables. If Xi, X5,..., X, are independent Bernoulli random
variables with success probability p, then the sum of those random

variables .
Y=>X
i=1

is distributed as the binomial distribution with parameter (n, p).

14



Sum of independent binomial random variables.

Theorem

If X and Y are independent binomial random variables with respective
parameters (n, p) and (m, p), then the sum X + Y is distributed as the
binomial distribution with parameter (n + m, p).
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Sum of independent binomial random variables.

Theorem

If X and Y are independent binomial random variables with respective
parameters (n, p) and (m, p), then the sum X + Y is distributed as the
binomial distribution with parameter (n + m, p).

Observe that we can express X =37 Zyand Y = 31" | Z; in terms
of independent Bernoulli random variables Z;'s with success probability p.
Then the resulting sum X + Y = 3.7 Z; must be a binomial random
variable with parameter (n+ m, p).

15



Expectations

16



Expectation.

Let X be a discrete random variable whose possible values are ay, a», . . .,
and let p(x) is the frequency function of X. Then the expectation
(expected value or mean) of the random variable X is given by

E[X] = Z a;ip(a;).

We often denote the expected value E(X) of X by u or ux. For a
function g, we can define the expectation of function of random variable

by
Elg(X)] = Zg(ai)P(ai)-

17
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Variance.

The variance of a random variable X, denoted by Var(X) or o2, is the
expected value of “the squared difference between the random variable

and its expected value E(X),” and can be defined as
Var(X) = E[(X — E(X))?] = E[X?] — (EIX])?.

The square-root /Var(X) of the variance Var(X) is called the standard
error (SE) (or standard deviation (SD)) of the random variable X.

18
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Example
A random variable X takes on values 0, 1, 2 with the respective
probabilities P(X =0) = 0.2, P(X =1) =0.5, P(X =2) =0.3.
Compute

1. E[X]

2. E[X?]

3. Var(X) and SD of X

19



Example

A random variable X takes on values 0, 1, 2 with the respective
probabilities P(X = 0) = 0.2, P(X =1) = 0.5, P(X =2) =0.3.
Compute

1.
2.
3.

E[X]
E[X?]
Var(X) and SD of X

E[X] =(0)(0.2) + (1)(0.5) + (2)(0.3) = 1.1

E[X?] = (0)%(0.2) + (1)%(0.5) + (2)?(0.3) = 1.7

Var(X) = E[(X — 1.1)] =

(—1.1)%(0.2) + (—0.1)?(0.5) + (0.9)?(0.3) = 0.49. Also, using
Var(X) = E[X?] — (E[X])? we can calculate

Var(X) = (1.7) — (1.1)% = 0.49.

Then we obtain the SD of v/0.49 = 0.7.

19



Expectation for two variables.

Suppose that we have two random variables X and Y/, and that p(x,y) is
their joint frequency function. Then the expectation of function g(X, Y)
of the two random variables X and Y is defined by

Ele(X, )] = 3 a(ar b)o(ar )

where the sum is over all the possible values of (X, Y).

20



Properties of expectation.

One can think of the expectation E(X) as "an operation on a random
variable X" which returns the average value for X.

1. Let a be a constant, and let X be a random variable having the
frequency function p(x). Then we can show that

Ela+X] =) (a+x)p(x) =a+ Y _ xp(x) =a+ E[X].

X

2. Let a and b be scalars, and let X and Y be random variables having
the joint frequency function p(x, y) and the respective marginal
density functions px(x) and py(y).

E[aX + bY] =) (ax+ by)p(x,y)

= aprX(x) +b2ypy(y) = aE[X] + bE[Y].

21
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Linearity property of expectation.

Let a and by, ..., b, be scalars, and let Xi,..., X, be random variables.
By applying the properties of expectation repeatedly, we can obtain

a—+ i b X; i b; X; i b X;

i=1 i=1 i=2

n
= =a+ > bE[X].
i=1

E =a+E :a+b1E[X1]+E

It is also useful to observe the above property as that of “linear operator.”

22



Expectations of Bernoulli and binomial random variables.

Let X be a Bernoulli random variable with success probability p. Then
the expectation of X becomes

EX]=0x(1-p)+1xp=p.

Now let Y be a binomial random variable with parameter (n, p). Recall
that Y can be expressed as the sum ), X; of independent Bernoulli
random variables Xi, ..., X, with success probability p. Thus, by using
property (c) of expectation we obtain

> %
i=1

ElY]=E

= Z E[X;] = np.

23



Expectations with Independent Random
Variables

24



Expectation for two independent random variables.

Suppose that X and Y are independent random variables. Then the joint
frequency function p(x,y) of X and Y can be expressed as

p(x,y) = px(x)py(y).

And the expectation of the function of the form g1(X) x g»(Y) is given
by

Elaa(X)g(Y)] = > ai(x)&(y) p(x.y)

Xy

Zgl(X)px(X)] X [Zgz(y)pv(y)] = E[g1(X)] x E[ga(Y)]-

y

25



Covariance and correlation.

Suppose that we have two random variables X and Y. Then the
covariance of two random variables X and Y can be defined as

Cov(X, Y) i= E((X = (Y — py)) = E(XY) = E(X) x E(Y),
where 11, = E(X) and p, = E(Y). Then the correlation coefficient
Cov(X,Y)

v/ Var(X)Var(Y)

measures the strength of the dependence of the two random variables.

The value p ranges from —1 to 1, and the relationship with the joint
distribution p(x,y) on xy-plane is visualized below.

0.4 0.0 -04 -0.8 -1.0

1.0 0.8

26
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Properties of variance and covariance.

1. If X and Y are independent, then Cov(X, Y) = 0 by observing that
E[XY] = E[X] - E[Y].

2. In contrast to the expectation, the variance is not a linear operator.
For two random variables X and Y, we have

Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y). (3.1)

Moreover, if X and Y are independent, by observing that Cov(X,Y) =0
in (3.1), we obtain Var(X + Y) = Var(X) + Var(Y). In general, we have

Var(Xy + -+ -+ X,) = Var(X1) + - - - + Var(X,).

if X1,...,X, are independent random variables.

27
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Example

The joint frequency function p(x, y) of two discrete random variables,
X and Y, is given by

X
1 0 1
yl-1[ 0 1/2 0
1 [(1/4 0 1/4

. Find the marginal frequency function for X and Y.
. Find E[X] and E[Y].

. Find Cov(X, Y).

. Are X and Y independent?

A W N =

28



L px(=1) = 7 px(0) = 3 px(1) =
py(—1) = 3: py(1) = 3.
2 EX) = (1) (1) +(0) (5 + () (3) =0
e =0 () + ) () -
(

3. EXY]=(-1)(1) (3) + (0)(=1) (3) + (1)(1) (3) =0
Thus, we obtain Cov(X, Y) = E[XY] — E[X]Y[Y] =0.

4. No, X and Y are not independent, because
p(—1,-1) = 0 # px(~1)py(-1) = 3.

29



Variances of Bernoulli and binomial random variables.

Let X be a Bernoulli random variable with success probability p. Then
the expectation E[X] is p, and the variance of X is

Var(X) = (0= p)* x (L= p) + (1 = p)* x p = p(1 - p).

Since a binomial random variable Y is the sum Y_"_, X; of independent
Bernoulli random variables, we obtain

Var(Y) = Var <Z X,-) = ZVar(X,-) = np(1l —p).

30



Hypergeometric Distribution
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Example
A committee of 5 students is to be formed from a group of 8 women

and 12 men.

1. How many different outcomes can a 5-member committee be
formed?

2. How many different outcomes can we form a committee consisting
of 2 women and 3 men?

3. What is the probability that a committee consists of 2 women and 3

men?

32



Example

A committee of 5 students is to be formed from a group of 8 women

and 12 men.

1.

How many different outcomes can a 5-member committee be
formed?

How many different outcomes can we form a committee consisting
of 2 women and 3 men?

What is the probability that a committee consists of 2 women and 3
men?

2
0 :20><19><18><17><16:15504
5 5!
8 12
(2) X (3) =6160
6160
—— ~ 0.4
15504 0-40

32



Hypergeometric distribution.

Consider the collection of N subjects, of which m belongs to one
particular class (say, “tagged” subjects), and (N — m) to another class
(say, “non-tagged"). Now a sample of size r is chosen randomly from the
collection of N subjects. Then the number X of “tagged” subjects
selected has the frequency function

N_
(%) (724)
N
(v)
where 0 < k < r must also satisfy k > r — (N — m) and k < m. The
above frequency function p(k) is called a hypergeometric distribution

p(k) =

with parameter (N, m, r).

33
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Example

A lot, consisting of 50 items, is inspected. Suppose that the lot contains
5 defective items. In the following two inspection procedures, What is
the probability that no defective items are found in the inspection?

1. Four items are randomly selected and tested.

2. Ten items are randomly selected and tested.

34



Example

A lot, consisting of 50 items, is inspected. Suppose that the lot contains
5 defective items. In the following two inspection procedures, What is
the probability that no defective items are found in the inspection?

1. Four items are randomly selected and tested.

2. Ten items are randomly selected and tested.

The number X of defective items in the inspection has a hypergeometric

distribution with N =50, m = 5.

1. Here we choose r = 4, and calculate P(X =0) = (50) ~
4
(o) (Go)
2. Here we choose r = 10, and calculate P(X = 0) = 2% ~0.31

34



Relation between Bernoulli trials and Hypergeometric distribu-

tion.

Let A; be the event that a “tagged” subject is found at the i-th selection.

1 if A; occurs;
X =
0 otherwise.

Then X; is a Bernoulli trial with “success” probability p = P(A;) = %

Then the number Y of “tagged” subjects in a sample of size r can be
expressed in terms of r Bernoulli random variables.

Y=>X
i=1
is distributed as a hypergeometric distribution with parameter (N, m, r).

35



Example

An urn contains 10 red balls and 20 blue balls, and balls are drawn one
at a time without replacement. Let A; be the event that a red ball is
drawn at the /-th attempt.

1. Find P(A;)

2. Calculate P(A).
3. Find P(A;) in general.

36



Example

An urn contains 10 red balls and 20 blue balls, and balls are drawn one

at a time without replacement. Let A; be the event that a red ball is

drawn at the /-th attempt.

1.
2.
3.

Find P(A;)
Calculate P(A3).
Find P(A;) in general.

10 1
P(A]) = — = =.
(A1) 30~ 3
If we draw 2 balls then we have 10 ><O29 2o{thcomes in which the
X
i . Thus, P(As) = = —.
second ball is red us, P(Az) 0%29 3

In general we have 10 x 29 x 28 X --- x (31 — i) outcomes in which
i-th ball is red, and obtain

_10x29x28x---x(31—i) 1

P(A;) = = = —.
(4) 30x29x28 x---x (31—/) 3

36



Expectation of hypergeometric random variable.

Let X; be a Bernoulli trial of finding a "“tagged” subject in the i-th
selection. Then the expectation of X becomes

m
Now let Y be a hypergeometric random variable with parameter
(N, m, r). Recall that Y can be expressed as the sum >_'_; X; of the
above Bernoulli trials. We can easily calculate

ixi = iE[Xi] = %
i=1 i=1

E[Y]=E

37



Dependence of Bernoulli trials in Hypergeometric distribution.

Suppose that i # j. Then we can find that

1 if A; and A; occurs;
XiX; =
0 otherwise.

is again a Bernoulli trial with “success” probability
p=P(ANA)) = m(m=1) " Gince E[X] = E[X;] = ™ and

= N(N—-1)"
E[XiX]] = —EE'E:B we can calculate
m(m — N)
Cov(X;, Xj) = E[XiXj] — E[X]E[X] = N(N=1) * 0

Therefore, X; and X; are dependent, and negatively correlated.

38
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Variance of hypergeometric random variable.

The variance of Bernoulli trial with success probability 7 is given by

Var(X;) = (%) (1 - %) — m(NN; m)

Together with Cov(Xj, Xj) = H we can calculate

N—1)

Var(Y) = Var(ZX) ZVar(X +2ZZCOVX,,X)

m(N — m) m(m — N)
:rxT—i—r(r—l)Xm
mr(N —m)(N —r)
N2(N —1)

39



39



Assignment No.3
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Supplementary Readings.

SS:

TH:

WM:

Murray R. Spiegel, John Schiller, and R. Alu Srinivasan, Probability
and Statistics 4th ed. McGraw-Hill.

Chapter 2: Random Variables, Discrete Probability Distributions,
Distribution Functions for Discrete Random Variables, Joint
Distributions: Discrte Case, Independent Random Variables.

Chapter 3: Definition of Mathematical Expectation, Functions of
Random Variables, Some Theorems on Expectation, Variance and
Standard Deviation, Some Theorems on Variance, Covariance,
Correlation Coefficient.

Chapter 4: Binomial Distribution, Some Properties of Binomial
Distribution, Hypergeometric Distribution.

Elliot A. Tanis and Robert V. Hogg, A Brief Course in Mathematical
Statistics. Prentice Hall.

Section 2.1-2.6.

Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, and
Keying Ye, Probability & Statistics for Engineers & Scientists, 9th
ed. Prentice Hall. 41



Problem

Let p(k), k = —1,0, 1, be the frequency function for random variable X.

Suppose that p(0) = %, and that p(—1) and p(1) are unknown.

1. Show that E[X?] does not depend on the unknown values p(—1)
and p(1).
2. If E[X] = %, then find the values p(—1) and p(1).
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Problem

The joint frequency function p(x,y) of two discrete random variables,
X and Y, is given by

X

1 2 3
1. Find the constant c.

1| c¢c 3c 2c
2| c ¢ 2c
2. Find E[X] and E[XY].

3. Are X and Y independent?

Y
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Problem

A pair (X, Y) of discrete random variables has the joint frequency

function

= @ =

plx.y) =T, x=1,2,3andy = 1,2.

Find P(X + Y = 3).

Find the marginal frequency function for X and Y.
Find E[Y] and Var(Y).

Are X and Y independent? Justify your answer.

a4
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Problem

1. Determine the constant c so that p(x) is a frequency function if
p(x) = cx, x=1,2,3,4,5,6.

2. Similarly find c if p(x) = ¢ (%)X x=1,2,3,4,....
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Problem

A study shows that 40% of college students binge drink. Let X be the
number of students who binge drink out of sample size n = 12.
1. Find the mean and standard deviation of X.

2. Do you agree that the probability that X is 5 or less is higher than
50%7? Justify your answer.
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Problem
Let X and Y be independent random variables.

1. Show that Var(aX) = a*Var(X).
2. IfE[X]=1,E[Y] =2 and Var(X) = 4, Var(Y) = 9 then find the
mean and the variance of Z = 3X —2Y.
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Problem

In a lot of 20 light bulbs, there are 9 bad bulbs. Let X be the number
of defective bulbs found in the inspection. Find the frequency function
p(k), and identify the range for k in the following inspection
procedures.

1. An inspector inspects 5 bulbs selected at random and without
replacement.

2. An inspector inspects 15 bulbs selected at random and without
replacement.
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Computer project.

A researcher visits a study area and capture m = 30 individuals at the
beginning, mark them with a yellow tag, and then release them back into
the environment. Next time the researcher returns and captures another
sample of r = 20 individuals. Some of the individuals in this second
sample have been marked during the initial visit, known as “recaptures.”
Let X be the number of recaptures. Suppose that N = 200 is the
population size, and simulate n = 1000 observations.

1. What is the frequency function for X? Can you find E[X] and
Var(X)?

2. Draw the relative frequency histogram from the simulation, and the
probability histogram from the frequency function for X.

3. Calculate mean() and sd() from the observations, and create a
table to compare them with E[X] and /Var(X).
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Computer project, continued.

Suppose that the population size N is unknown. Then how can we guess
N from the values m, r, and the observed number X of recaptures? You
will investigate the performance of the following strategies:

l. Estimate it by N = mxr with small value e = 0.25.
X+e

xXr

Il. Estimate it by N =

(m+1)x(r+1)
X+1

Assuming the population size N = 200, continue the simulation of

only when X > 1.

1. Estimate it by N =

sampling X. But this time use it to calculate the estimation of N for
each strategy. Which strategy do you recommend in order to predict the
unknown population size N7
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Answers
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Problem 1.

1. E[X?] = p(~1)+p(1) =1 - p(0) = 2
2. E[X] = —p(—1) + p(1) = ;. Together with p(—1) + p(1) = 3, we
) =

obtain p(—1) = 1 and p(1) = 3.
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Problem 2.

1. Ei 12}2, 1P(x,y) = 10c = 1 implies that ¢ = 1.

2 EXI=(1)(5)+@EF)+B3(E) =%
ElYI=(1)(}) +(2 )(§)=%
E[XY] = (1)( 1) (%) ()1 (%) +03)(1) (%) + ()2 (F) +
2)(2) (1) + (3)(2) (%) =

3. X and Y are not mdependent because
p(1,1) = 15 # px(1)py(1) = 5. Or, you can find it by calculating

Cov(X, Y) = E[XY] — E[X]E[Y] = —
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Problem 3.

1. P(X+Y =3)=p(1,2) + p(2,1) = 2
2. px(y) =% forx=1,2,3.
py(y) =% fory =1,2.

3 EYI=(1)(3) + () (3 )—% E[Y?]=(1)(3) +(27(5) =3
Var(Y) = E[Y?] - (E[Y])* =

4. Yes, since the joint frequency function satisfies
p(X)y) = px(X)Py(y) for all x = 1v273 and y = 152
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Problem 4.

1. 30, p(x) = ¢ x %8 — 21¢ = 1 Thus, we obtain ¢ = 4
2. 32 p(x) =cx 1(2(/23/)3) = 2c =1 Thus, we obtain ¢ = J

55



Problem 5.

1. The mean is np = (12)(0.4) = 4.8, and the standard deviation is

/(12)(0.4)(0.6) ~ 1.7.

2. Yes, because P(X < 5) ~ 0.665.
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Problem 6.

1. Var(aX) = E[(aX — E[aX])?] = E[(aX — aE[X])?] =
E[a%(X — E[X])?] = a®E[(X — E[X])?] = a®Var(X).

2. E[Z]=E[BX-2Y]=(3)(1) - (2)(2) = -1
Var(Z) = Var(3X + (=2)Y) = Var(3X) + Var((-2)Y) =
(3)(4) + (-2)%(9) =72
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Problem 7.

X has a hypergeometric distribution with N =20 and m = 9.
1. Here we choose r = 5. Thus,
9\ ( 11
() (2
20
(5)

where k takes a value in the range of 0 < k < 5.

p(k) =

2. Here we choose r = 15. Thus,

(&) (154
(i)

where k takes a value in the range of 4 < k < 9.

p(k) =
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