# **Poisson Distributions**

# Euler's number and natural exponential.

$$\lim_{n\to\infty} \left(1 + \frac{a}{n}\right)^n = e^{\frac{a}{n}} = \frac{1}{e}$$

$$\lim_{n\to\infty} \left(1 - \frac{1}{n}\right)^n = e^{\frac{a}{n}} = \frac{1}{e}$$

The number

$$e = \lim_{n \to \infty} \left( 1 + \frac{1}{n} \right)^n = 2.7182 \dots = 1$$

is known as the base of the natural logarithm (or, called Euler's number). The exponential function  $f(x) = e^x$  is associated with the Taylor series

$$e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!}.$$
 (4.1)

#### Poisson distribution.

The **Poisson distribution** with parameter  $\lambda$  ( $\lambda > 0$ ) has the frequency function

$$P(x=k) = p(k) = (e^{-\lambda})\frac{\lambda^{k}}{k!}, \quad k = 0, 1, 2, ...$$

By applying (4.1) we can immediately see the following:

$$1 \stackrel{?}{=} \sum_{k=0}^{\infty} p(k) = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{-\lambda} e^{\lambda} = 1.$$

A Poisson random variable X represents the number of successes when there are a large (and usually unknown) number of independent trials

### **Example**

Randon variable X

Suppose that the number of typographical errors per page has a Poisson distribution with parameter  $\Lambda = 0.5$ 

- 1.) Find the probability that there are no errors on a single page.
- (2.) Find the probability that there is at least one error on a single page.

$$P(x=0) = p(0) = e^{-\lambda} \frac{x^{k}}{h!}$$

$$P(x=0) = p(0) = e^{-\lambda} \frac{x^{0}}{0!} = e^{-\lambda} = e^{-0.5}$$

$$P(x>1) = 1 - P(x=0) = 1 - p(0) = 1 - e^{-0.5}$$

$$P(X \ge 1) = 1 - P(X = 0) = 1 - p(0) = 1 - e^{-0.5}$$

### **Example**

Suppose that the number of typographical errors per page has a Poisson distribution with parameter  $\lambda = 0.5$ .

- 1. Find the probability that there are no errors on a single page.
- 2. Find the probability that there is at least one error on a single page.

1. 
$$P(X = 0) = p(0) = e^{-0.5} \approx 0.607$$

2. 
$$P(X \ge 1) = 1 - p(0) = 1 - e^{-0.5} \approx 0.393$$

# Poisson approximation to binomial distribution.

$$-p(fe) = {n \choose k} p^{k} (1-p)^{n-k} = \frac{n!}{k! (n-k)!} p^{k} (1-p)^{n-k}$$

$$0$$

The Poisson distribution can be used as an approximation for a binomial distribution with parameter (n,p) when n is large and p is small enough so that np is a moderate number. Let  $\lambda = np$ . Then the binomial frequency function becomes

$$p(k) = \frac{n!}{k!(n-k)!} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k} \qquad \lim_{n \to \infty} \left(1 - \frac{\lambda}{n}\right)^k = 1$$

$$= \frac{\lambda^k}{k!} \cdot \frac{n!}{(n-k)!n!} \cdot \left(1 - \frac{\lambda}{n}\right)^n \cdot \left(1 - \frac{\lambda}{n}\right)^{-k} \qquad \frac{\lambda^k}{k!} \cdot 1 \cdot e^{-\lambda} \cdot 1 = e^{-\lambda} \frac{\lambda^k}{k!} \quad \text{as } n \to \infty.$$

$$\approx n^k \text{ if } n \text{ is very large}$$

Big picture frank

$$\binom{n}{k} p^k (i-p)^{n-k} \approx e^{-\lambda} \frac{\lambda^k}{k!}$$

if n is large and p is small and Nanp.

#### **Example**

Suppose that the a microchip is defective with probability 0.02. Find the probability that a sample of 100 microchips will contain at most 1 defective microchip.

$$X = \# \text{ of defective items out of loo}$$

$$P(X \le L) = P(X=0) + P(X=1) = p(0) + p(1)$$

$$= \binom{100}{0} p^{0} (1-p)^{10} + \binom{100}{1} p^{1} (1-p)^{11} \quad \text{Mos is } p? \quad p = 0.02$$

$$\approx e^{-\lambda} \frac{\lambda^{0}}{0!} + e^{-\lambda} \frac{\lambda^{1}}{1!} \quad \text{Mos is } 1? \quad q = np = (1-0)(n+0.1) = 2$$

#### **Example**

Suppose that the a microchip is defective with probability 0.02. Find the probability that a sample of 100 microchips will contain at most 1 defective microchip.

The number X of defective microchips has a binomial distribution with n = 100 and p = 0.02. Thus, we obtain

$$P(X \le 1) = p(0) + p(1)$$

$$= {100 \choose 0} (0.98)^{100} + {100 \choose 1} (0.02)(0.98)^{99} \approx 0.403$$

Approximately X has a Poisson distribution with  $\lambda = (100)(0.02) = 2$ . We can calculate

$$P(X \le 1) = p(0) + p(1) = e^{-2} + (2)(e^{-2}) \approx 0.406$$

### **Expectation and variance of Poisson distribution.**

$$X = \overline{\partial}_{1} \text{ some d riv. with } (n, p) \begin{cases} Y = Poisson \text{ r.v. with } (\lambda = np) \Rightarrow p = \frac{\lambda}{n} \end{cases}$$

$$E[X] = np \qquad \text{approximately } E[Y] = \lambda$$

$$\overline{\nabla ur(x)} = np(1-p) \qquad \text{for } (x_{1}) = n(\frac{\lambda}{n}) \left[ (-(\frac{\lambda}{n}))^{\frac{1}{n}} - (\frac{\lambda}{n})^{\frac{1}{n}} \right] = \lambda$$

Let  $X_n$ ,  $n=1,2,\ldots$ , be a sequence of binomial random variables with parameter  $(n,\lambda/n)$ . Then we regard the limit of the sequence as a Poisson random variable Y, and use the limit to find E[Y] and Var(Y).

Thus, we obtain

we obtain 
$$E[X_n] = \lambda \quad \rightarrow \quad E[Y] = \lambda \quad \text{as } n \to \infty;$$

$$Var(X_n) = \lambda \left(1 - \frac{\lambda}{n}\right) \quad \rightarrow \quad Var(Y) = \lambda \quad \text{as } n \to \infty;$$

# Sum of independent Poisson random variables.

#### **Theorem**

The sum of independent Poisson random variables is a Poisson random variable: If X and Y are independent Poisson random variables with respective parameters  $\lambda_1$  and  $\lambda_2$ , then Z = X + Y is distributed as the Poisson distribution with parameter  $\lambda_1 + \lambda_2 = \lambda$ 

```
Binomial dernherm her testine property:

X, Y are independent and binomial rev's then so is X+Y,

E[Z] = \( \) is the parameter for Z.

E[X+Y]

EZb) + EEY)

\( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \)
```

# Sum of independent Poisson random variables.

#### **Theorem**

The sum of independent Poisson random variables is a Poisson random variable: If X and Y are independent Poisson random variables with respective parameters  $\lambda_1$  and  $\lambda_2$ , then Z=X+Y is distributed as the Poisson distribution with parameter  $\lambda_1+\lambda_2$ .

#### Proof

Let  $X_n$  and  $Y_n$  be independent binomial random variables with respective parameter  $(k_n,p_n)$  and  $(l_n,p_n)$ . Then the sum  $X_n+Y_n$  of the random variables has the binomial distribution with parameter  $(k_n+l_n,p_n)$ . By letting  $k_np_n\to\lambda_1$  and  $l_np_n\to\lambda_2$  with  $k_n,l_n\to\infty$  and  $p_n\to0$ , the respective limits of  $X_n$  and  $Y_n$  are Poisson random variables X and Y with respective parameters  $\lambda_1$  and  $\lambda_2$ . Meanwhile, the limit of  $X_n+Y_n$  is the sum of the random variables X and Y, and has a Poisson distribution with parameter  $\lambda_1+\lambda_2$ .

$$\lambda = \lim_{n \to a} (k_n + l_n) p_n = \lim_{n \to a} k_n p_n + \lim_{n \to a} l_n p_n = \lambda_1 + \lambda_2$$

# **Assignment No.4**

## **Supplementary Readings.**

- SS: Murray R. Spiegel, John Schiller, and R. Alu Srinivasan, Probability and Statistics 4th ed. McGraw-Hill.
  Chapter 4: Poisson Distribution, Some Properties of Poisson Distribution. Relation between Binomial and Poisson Distributions.
- **TH:** Elliot A. Tanis and Robert V. Hogg, *A Brief Course in Mathematical Statistics*. Prentice Hall, NJ. Section 2.3.
- WM: Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, and Keying Ye, Probability & Statistics for Engineers & Scientists, 9th ed. Prentice Hall, NJ. Section 5.5.

The probability that a man in a certain age group dies in the next four years is p = 0.05. Suppose that we observe 20 men.

- 1. Find the probability that two of them or fewer die in the next four years.
- 2. Find an approximation by using a Poisson distribution.

The probability of being dealt a royal straight flush (ace, king, queen, jack, and ten of the same suit) in poker is about  $1.5 \times 10^{-6}$ . Suppose that an avid poker player sees 100 hands a week, 52 weeks a year, for 20 years.

- 1. What is the probability that she never sees a royal straight flush dealt?
- 2. What is the probability that she sees at least two royal straight flushes dealt?

Professor Rice was told that he has only 1 chance in 10,000 of being trapped in a much-maligned elevator in the mathematics building.

Assume that the outcomes on all the days are mutually independent. If he goes to work 5 days a week, 52 weeks a year, for 10 years and always rides the elevator up to his office when he first arrives.

- 1. What is the probability that he will never be trapped?
- 2. What is the probability that he will be trapped once?
- 3. What is the probability that he will be trapped twice?

Suppose that a rare disease has an incidence of 1 in 1000. and that members of the population are affected independently. Let X be the number of cases in a population of 100,000.

- 1. What is the average number of cases?
- 2. Find the frequency function.

Suppose that in a city the number of suicides can be approximated by a Poisson random variable with  $\lambda=0.33$  per month.

- 1. What is the probability of two suicides in January?
- 2. What is the distribution for the number of suicides per year?
- 3. What is the average number of suicides in one year?
- 4. What is the probability of two suicides in one year?

# Computer Project.

Improvised explosive devices (IED's) are planted in a city block of 25 square miles (exactly a  $5\times5$ -mile square). For every week the number of newly found IED's in this block is approximated by a Poisson distribution with  $\lambda=10$ , and the locations of these IED's are scattered uniformly over the city block. Suppose that you are responsible for sweeping and clearing the south-west corner of  $2\times2$ -mile square block every week.

- 1. Develop the simulation to count the number of IED's in your area, and run it for 50 weeks to generate a random sample. Draw the relative frequency histogram from the simulation.
- 2. Calculate mean() and var() of the simulation. How many IED's in average do you expect to discover in your area for a particular week?

# Computer Project, continued.

Let X be the number of IED's planted in the area of  $2 \times 2$ -mile square block in a week.

- 1. Discuss what distribution best approximates the random variable X, and how you can identify the parameter value associated with this distribution.
- 2. Continue from the previous question, what is the chance that you find more than one IED in a particular week? P(x > 1) = 1 P(x < 1)
- 3. If the number of IED's per week in the  $5\times 5$ -mile square has a Poisson distribution with  $\lambda=20$ , how many IED's do you expect to discover in the area of  $2\times 2$ -mile square block every week? What is the chance that you find more than one IED in a particular week?

# **Answers**

### Problem 1.

1. The number X of men dying in the next four years has a binomial distribution with n = 20 and p = 0.05.

$$P(X \le 2) = p(0) + p(1) + p(2)$$

$$= {20 \choose 0} (0.95)^{20} + {20 \choose 1} (0.05) (0.95)^{19} + {20 \choose 2} (0.05)^{2} (0.95)^{18}$$

$$\approx 0.925$$

2. The random variable X has approximately a Poisson distribution with  $\lambda = (0.05)(20) = 1$ .

$$P(X \le 2) = e^{-1} + e^{-1} + \frac{1}{2}e^{-1} = \frac{5}{2}e^{-1} \approx 0.920$$

### Problem 2.

1. The number X of royal straight flushes has a Poisson distribution with

$$\lambda = 1.5 \times 10^{-6} \times (100 \times 52 \times 20) = 0.156$$

Thus, we obtain

$$P(X = 0) = p(0) = e^{-0.156} \approx 0.856$$

2. 
$$P(X \ge 2) = 1 - p(0) - p(1) = 1 - e^{-0.156} - (0.156)(e^{-0.156}) = 1 - (1.156)(e^{-0.156}) \approx 0.011$$

### Problem 3.

1. The number *X* of misfortunes for Professor Rice being trapped has a Poisson distribution with

$$\lambda = 10^{-4} \times (5 \times 52 \times 10) = 0.26$$

Thus, we obtain

$$P(X = 0) = p(0) = e^{-0.26} \approx 0.771$$

2. 
$$P(X = 1) = p(1) = (0.26)(e^{-0.26}) \approx 0.20$$

3. 
$$P(X = 2) = p(2) = \frac{(0.26)^2}{2} (e^{-0.26}) \approx 0.026$$

### Problem 4.

1. The number X of cases has a Poisson distribution with

$$\lambda = 10^{-3} \times 100,000 = 100$$

Thus, we obtain  $E[X] = \lambda = 100$ .

2. 
$$p(k) = (e^{-100}) \frac{100^k}{k!}$$
 for  $k = 0, 1, ...$ 

### Problem 5.

1. Let  $X_1$  be the number of suicides in January. Then we have

$$P(X_1 = 2) = \frac{(0.33)^2}{2} (e^{-0.33}) \approx 0.039$$

2. Let  $X_1, \ldots, X_{12}$  be the number of suicides in *i*-th month. Then

$$Y=X_1+X_2+\cdots+X_{12}$$

represents the number of suicides in one year, and it has a poisson distribution.

- 3.  $E[Y] = E[X_1] + E[X_2] + \cdots + E[X_{12}] = (12)(0.33) = 3.96.$
- 4. Since  $\lambda = E[Y] = 3.96$  is the parameter value for the Poisson random variable Y, we obtain

$$P(Y=2) = \frac{(3.96)^2}{2} (e^{-3.96}) \approx 0.149$$