
Continuous Probability Distributions
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Continuous random variables.

A continuous random variable is a random variable whose possible

values are real values such as 78.6, 5.7, 10.24, and so on. Examples of

continuous random variables include temperature, height, diameter of

metal cylinder, etc. In what follows, a random variable means a

“continuous” random variable, unless it is specifically said to be discrete.

The probability distribution of a random variable X specifies how its

values are distributed over the real numbers. This is completely

characterized by the cumulative distribution function (cdf). The cdf

F (t) := P(X ≤ t).

represents the probability that the random variable X is less than or equal

to t. Then we say that “the random variable X is distributed as F (t).”
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Properties of cdf.

The cdf F (t) must satisfy the following properties:

1. The cdf F (t) is a positive function.

F (t) ≥ 0 for all t.

2. The cdf F (t) increases monotonically.

F (s) ≤ F (t) whenever s < t.

3. The cdf F (t) must tend to zero as t goes to negative infinity

“−∞”, and must tend to one as t goes to positive infinity “+∞.”

lim
t→−∞

F (t) = 0

lim
t→+∞

F (t) = 1

3



Probability density function (pdf).

It is often the case that the probability that the random variable X takes

a value in a particular range is given by the area under a curve over that

range of values. This curve is called the probability density function

(pdf) of the random variable X , denoted by f (x). Thus, the probability

that “a ≤ X ≤ b” can be expressed by

P(a ≤ X ≤ b) =

∫ b

a

f (x)dx .

The pdf f (x) must satisfy the following properties:

1. The pdf f (x) is a positive function [that is, f (x) ≥ 0].

2. The area under the curve of f (x) (and above the x-axis) is one [that

is,

∫ ∞

−∞
f (x)dx = 1].
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Relation between cdf and pdf.

The pdf f (x) is related to the cdf F (t) via

F (t) = P(X ≤ t) =

∫ t

−∞
f (x)dx .

This implies that such cdf F (t) is a continuous function, and that the pdf

f (x) is the derivative of the cdf F (x) if f is continuous at x , that is,

f (x) =
dF (x)

dx
.
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Example

A random variable X is called a uniform random variable on [a, b],

when X takes any real number in the interval [a, b] equally likely. Then

the pdf of X is given by

f (x) =

{
1/(b − a) if a ≤ x ≤ b;

0 otherwise [that is, if x < a or b < x ].

Find the cdf F (t).

F (t) =

∫ t

−∞
f (x)dx =


0 if t < a;

t−a
b−a if a ≤ t ≤ b;

1 if t > b.
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Joint density function.

Consider a pair (X ,Y ) of random variables. A joint density function

f (x , y) is a nonnegative function satisfying∫ ∞

−∞

∫ ∞

−∞
f (x , y) dy dx = 1,

and is used to compute probabilities constructed from the random

variables X and Y simultaneously by

P(a ≤ X ≤ b, c ≤ Y ≤ d) =

∫ b

a

[∫ d

c

f (x , y) dy

]
dx
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Marginal densities and independence.

Given the joint density function f (x , y), the distribution for each of X

and Y is called the marginal distribution, and the marginal density

functions of X and Y , denoted by fX (x) and fY (y), are given

respectively by

fX (x) =

∫ ∞

−∞
f (x , y) dy and fY (y) =

∫ ∞

−∞
f (x , y) dx .

If the joint density function f (x , y) for continuous random variables X

and Y is expressed in the form

f (x , y) = fX (x)fY (y) for all x , y ,

then X and Y are said to be independent.
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Expectations and Variances
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Expectation.

Let f (x) be the pdf of a continuous random variable X . Then we define

the expectation of the random variable X by

E [X ] =

∫ ∞

−∞
x f (x) dx .

Furthermore, we can define the expectation E [g(X )] of the function

g(X ) of random variable by

E [g(X )] =

∫ ∞

−∞
g(x) f (x) dx ,

if g(x) is integrable with respect to f (x) dx , that is,∫∞
−∞ |g(x)| f (x) dx < ∞.
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Properties of expectation.

When X is a discrete random variable, E [X ] is considered as a “linear

operator.” This remains true even if X is a continuous random variable.

Thus, we have the following properties (without proof):

1. E [a+ X ] = a+ E [X ].

2. E [aX + bY ] = aE [X ] + bE [Y ].

3. E

[
a+

n∑
i=1

biXi

]
= a+

n∑
i=1

biE [Xi ].

4. If X and Y are independent then

E [g1(X )g2(Y )] = E [g1(X )]× E [g2(Y )].
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Variance.

We can define the variance for the continuous random variable X by

Var(X ) := E [(X − E (X ))2] = E [X 2]− (E [X ])2,

and often denote it by σ2. The square-root
√
Var(X ) is the standard

deviation (SD), denoted by σ.
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Example

Let X be a uniform random variable on [a, b]. Compute E [X ] and

E [X 2], and find Var(X ).

E [X ] =

∫ b

a

x

(
1

b − a

)
dx =

(
1

b − a

)[
x2

2

]b
a

=
a+ b

2

E [X 2] =

∫ b

a

x2
(

1

b − a

)
dx =

(
1

b − a

)[
x3

3

]b
a

=
a2 + ab + b2

3

Var(X ) =
a2 + ab + b2

3
−
(
a+ b

2

)2

=
(b − a)2

12

13



Example

Let X be a uniform random variable on [a, b]. Compute E [X ] and

E [X 2], and find Var(X ).

E [X ] =

∫ b

a

x

(
1

b − a

)
dx =

(
1

b − a

)[
x2

2

]b
a

=
a+ b

2

E [X 2] =

∫ b

a

x2
(

1

b − a

)
dx =

(
1

b − a

)[
x3

3

]b
a

=
a2 + ab + b2

3

Var(X ) =
a2 + ab + b2

3
−
(
a+ b

2

)2

=
(b − a)2

12

13



Exponential and Gamma Distributions
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Exponential distribution.

The exponential density function is defined as

f (x) =

{
λe−λx x ≥ 0;

0 x < 0

Then the cdf is computed as

F (t) =

{
1− e−λt t ≥ 0;

0 t < 0
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Survival function and memoryless property.

The function S(t) = 1− F (t) = P(X > t) is called the survival

function. When F (t) is an exponential distribution, we have

S(t) = e−λt for t ≥ 0. Furthermore, we can find that

P(X > t + s | X > s) =
P(X > t + s)

P(X > s)
=

S(t + s)

S(s)
= S(t) = P(X > t),

(5.1)

which is referred as the memoryless property of exponential distribution.
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Gamma distribution.

The gamma function, denoted by Γ(x), is defined as

Γ(α) =

∫ ∞

0

uα−1e−u du, α > 0.

It satisfies the recursive formula Γ(α) = (α− 1)Γ(α− 1). Then the

gamma density is defined as

f (t) =
λα

Γ(α)
tα−1e−λt t ≥ 0

which depends on two parameters α > 0 and λ > 0.
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Parameters of gamma distribution.

We call the parameter α a shape parameter, because changing α

changes the shape of the density. We call the parameter λ a rate

parameter, because changing λ merely rescales the density without

changing its shape. This is equivalent to changing the units of

measurement (feet to meters, or seconds to minutes). Suppose that the

parameter α is an integer n. Since Γ(1) = 1, by the recursive formula we

obtain Γ(n) = (n − 1)!. In particular, the gamma distribution with α = 1

becomes an exponential distribution (with parameter λ).
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Expectation of gamma distribution.

Let X be a gamma random variable with parameter (α, λ). Then we can

calculate E [X ] and E [X 2] as follows.

E [X ] =

∫ ∞

0

x
λα

Γ(α)
xα−1e−λx dx =

1

λΓ(α)

∫ ∞

0

(λx)αe−λx λdx

=
1

λΓ(α)

∫ ∞

0

uαe−u du =
1

λ

Γ(α+ 1)

Γ(α)
=

α

λ
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Variance of gamma distribution.

We have

E [X 2] =

∫ ∞

0

x2
λα

Γ(α)
xα−1e−λx dx =

1

λ2Γ(α)

∫ ∞

0

(λx)α+1e−λx λdx

=
1

λ2Γ(α)

∫ ∞

0

uα+1e−u du =
1

λ2

Γ(α+ 2)

Γ(α)
=

α(α+ 1)

λ2

Thus, we can obtain

Var(X ) =
α(α+ 1)

λ2
−
(α
λ

)2
=

α

λ2
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Chi-square distribution.

The gamma distribution with α =
n

2
and λ = 1

2 is called the chi-square

distribution with n degrees of freedom. [It plays a vital role later in

understanding another important distribution, called t-distribution.]
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Normal Distributions
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Normal distribution.

A normal distribution is represented by a family of distributions which

have the same general shape, sometimes described as “bell shaped.” The

normal distribution has the pdf

f (x) =
1

σ
√
2π

exp

[
− (x − µ)2

2σ2

]
, (5.2)

which depends upon two parameters µ and σ2. In (5.2), π = 3.14159 . . .

is the famous “pi” (the ratio of the circumference of a circle to its

diameter), and exp(u) is the exponential function eu with the base

e = 2.71828 . . . of the natural logarithm.
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Integrations of normal density functions.

Much celebrated integrations are the following:

1

σ
√
2π

∫ ∞

−∞
e−

(x−µ)2

2σ2 dx = 1, (5.3)

1

σ
√
2π

∫ ∞

−∞
xe−

(x−µ)2

2σ2 dx = µ, (5.4)

1

σ
√
2π

∫ ∞

−∞
(x − µ)2e−

(x−µ)2

2σ2 dx = σ2. (5.5)

Equation (5.3) guarantees that the function (5.2) always represents a

“probability density” no matter what values the parameters µ and σ2

would take. Equation (5.4) and (5.5) respectively imply E [X ] = µ and

Var(X ) = σ2 for a normal random variable X .
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Parameters of normal density function.

We say that a random variable X is normally distributed with

parameter (µ, σ2) when X has the pdf (5.2). The parameter µ, called a

mean (or, location parameter), provides the center of the density, and

the density function f (x) is symmetric around µ. The parameter σ is a

standard deviation (or, a scale parameter); small values of σ lead to

high peaks but sharp drops. Larger values of σ lead to flatter densities.

The shorthand notation

X ∼ N(µ, σ2)

is often used to express that X is a normal random variable with

parameter (µ, σ2).
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Linear transform of normal random variable.

One of the important properties of normal distribution is that if X is a

normal random variable with parameter (µ, σ2) [that is, the pdf of X is

given by (5.2)], then Y = aX + b is also a normal random variable

having parameter (aµ+ b, (aσ)2). In particular,

X − µ

σ
(5.6)

becomes a normal random variable with parameter (0, 1), called the

standard normal distribution.
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Standard normal distribution.

The normal density ϕ(x) with parameter (0, 1) is given by

ϕ(x) :=
1√
2π

e−
x2

2 ,

and the table of standard normal distribution is used to obtain the

values for the cdf

Φ(t) :=

∫ t

−∞
ϕ(x) dx .
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How to calculate probabilities.

Suppose that a tomato plant height X is normally distributed with

parameter (µ, σ2). Then what is the probability that the tomato plant

height is between a and b? The integration

P(a ≤ X ≤ b) =

∫ b

a

1

σ
√
2π

e−
(x−µ)2

2σ2 dx

seems too complicated.
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How to calculate probabilities, continued.

If we consider the random variable
X − µ

σ
, then the event {a ≤ X ≤ b}

is equivalent to the event{
a− µ

σ
≤ X − µ

σ
≤ b − µ

σ

}
.

Let a′ = a−µ
σ and b′ = b−µ

σ . Then in terms of probability, this means that

P(a ≤ X ≤ b) = P

(
a′ ≤ X − µ

σ
≤ b′

)
=

∫ b′

a′
ϕ(x) dx = Φ(b′)− Φ(a′).

(5.7)

Finally look at the values for Φ(a′) and Φ(b′) from the table of standard

normal distribution, and plug them into (5.7).
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Example

The tomato plant height is normally distributed with parameters µ = 15

and σ = 4 inches. What is the probability that the height is between

14.24 and 16.16 inches?

We can calculate a′ = 14.24−15
4 = −0.19 and b′ = 16.16−15

4 = 0.29. Then

find Φ(−0.19) = 0.4247 and Φ(0.29) = 0.6141. Thus, the probability of

interest becomes 0.1894, or approximately 0.19.
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Summary.

Suppose that a random variable X is normally distributed with mean µ

and standard deviation σ. Then we can obtain

1. P(a ≤ X ≤ b) = Φ

(
b − µ

σ

)
− Φ

(
a− µ

σ

)
;

2. P(X ≤ b) = Φ

(
b − µ

σ

)
;

3. P(a ≤ X ) = 1− Φ

(
a− µ

σ

)
.
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Central Limit Theorem

32



Convergence in distribution.

Let Z1,Z2, . . . be a sequence of random variables having the cdf’s

F1,F2, . . ., and let Z be a random variable having the cdf F . Then we

say that the sequence Xn converges to X in distribution (in short, Xn

converges to F ) if

lim
n→∞

Fn(x) = F (x) for every x at which F (x) is continuous.

The convergence is completely characterized in terms of the

distributions F1,F2, . . . and F .
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Central Limit Theorem.

Let X1,X2, . . . be a sequence of “independent and identically distributed

(iid)” random variables having the common distribution F with mean µ

and variance σ2. Then

Zn =

n∑
i=1

Xi − nµ

σ
√
n

=

n∑
i=1

(Xi − µ)/σ

√
n

n = 1, 2, . . .

converges to the standard normal distribution.
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Normal approximation.

Let X1,X2, . . . ,Xn be “independent and identically distributed (iid)”

random variables with mean µ and variance σ2. If the size n is

adequately large, then the distribution of the sum

Y =
n∑

i=1

Xi

can be approximated by the normal distribution with parameter

(nµ, nσ2). A general rule for “adequately large” n is about n ≥ 30, but it

is often good for much smaller n. Similarly the sample mean

X̄n =
1

n

n∑
i=1

Xi

has approximately the normal distribution with parameter (µ, σ2/n).
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Approximating probabilities.

If n is sufficiently large, then the following normal approximation can be

applied for the sum Y or the average X̄ . It allows us to approximate the

probability that the random variable (either Y or X̄ ) takes a value

between a and b.

Variable Approximation Probability between a and b

Y = X1 + · · ·+ Xn N(nµ, nσ2) Φ

(
b − nµ

σ
√
n

)
− Φ

(
a− nµ

σ
√
n

)

X̄ =
X1 + · · ·+ Xn

n
N

(
µ,

σ2

n

)
Φ

(
b − µ

σ/
√
n

)
− Φ

(
a− µ

σ/
√
n

)
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Example

An insurance company has 10,000 automobile policyholders. The

expected yearly claim per policyholder is $240 with a standard deviation

of $800. Find approximately the probability that the total yearly claim

exceeds $2.7 million. Can you say that such event is highly unlikely?

P

(
10000∑
i=1

Xi > 2700000

)
≈ 1− Φ(3.75) < 0.0001

This is highly unlikely.
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Approximation for binomial distributions.

Suppose that X1, . . . ,Xn are “independent and identically distributed

(iid)” Bernoulli random variables with the mean p = E (X ) and the

variance p(1− p) = Var(X ). If the size n is adequately large, then the

distribution of the sum

Y =
n∑

i=1

Xi

can be approximated by the normal distribution with parameter

(np, np(1− p)). Thus, the normal distribution N(np, np(1− p))

approximates the binomial distribution B(n, p). A general rule for

“adequately large” n is to satisfy np ≥ 5 and n(1− p) ≥ 5.
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Calculating probabilities with correction.

Let Y be a binomial random variable with parameter (n, p), and let X be

a normal random variable with parameter (np, np(1− p)). Then the

distribution of Y can be approximated by that of X . However, since X is

a continuous random variable, the continuity correction has to be made

in the following approximation of probability calculation.

P(i ≤ Y ≤ j) ≈ P(i − 0.5 ≤ X ≤ j + 0.5)

= Φ

(
j + 0.5− np√

np(1− p)

)
− Φ

(
i − 0.5− np√

np(1− p)

)
.
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Example

Suppose that a coin is tossed 100 times and lands heads 60 times or

more. Should we be surprised and doubt that the coin is fair?

P(60 ≤ Y ≤ 100) ≈ Φ

(
100.5− 50

5

)
− Φ

(
59.5− 50

5

)
= Φ(9.9)− Φ(1.9) = 1− 0.9713 = 0.0287

It is highly unlikely, and we should doubt that the coin is fair.

40



Example

Suppose that a coin is tossed 100 times and lands heads 60 times or

more. Should we be surprised and doubt that the coin is fair?

P(60 ≤ Y ≤ 100) ≈ Φ

(
100.5− 50

5

)
− Φ

(
59.5− 50

5

)
= Φ(9.9)− Φ(1.9) = 1− 0.9713 = 0.0287

It is highly unlikely, and we should doubt that the coin is fair.

40



Assignment No.5
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Supplementary Readings.

SS: Murray R. Spiegel, John Schiller, and R. Alu Srinivasan, Probability

and Statistics 4th ed. McGraw-Hill.

Chapter 2: Continuous Random Variables, Graphical Interpretations,

Joint Distribution: Continuous Case,

Chapter 3: Definition of Mathematical Expectation, Functions of

Random Variables.

Chapter 4: Normal Distribution, Some Properties of Normal

Distribution, Relation between Binomial and Normal Distributions,

Central Limit Theorem, Uniform Distribution, Gamma Distribution.

TH: Elliot A. Tanis and Robert V. Hogg, A Brief Course in Mathematical

Statistics. Prentice Hall.

Section 3.2–3.4, and 3.6–3.7.

WM: Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, and

Keying Ye, Probability & Statistics for Engineers & Scientists, 9th

ed. Prentice Hall.

Section 3.1–3.4., 6.1–6.6, and 8.4
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Problem

Suppose that X has the density function f (x) = cx2 for 0 ≤ x ≤ 1 and

f (x) = 0 otherwise.

1. Find c.

2. Find the cdf.

3. What is P(.1 ≤ X < .5)?
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Problem

Let X be a random variable with the pdf

f (x) =

{
2x if 0 ≤ x ≤ 1;

0 otherwise.

1. Find E [X ].

2. Find E [X 2] and Var(X ).
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Problem

Suppose that the lifetime of an electronic component follows an

exponential distribution with rate parameter λ = 0.2.

1. Find the probability that the lifetime is less than 10.

2. Find the probability that the lifetime is between 5 and 15.
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Problem

Suppose that in a certain population, individual’s heights are

approximately normally distributed with parameters µ = 70 and

σ = 3in.

1. What proportion of the population is over 6ft. tall?

2. What is the distribution of heights if they are expressed in

centimeters?
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Problem

Let X be a normal random variable with µ = 5 and σ = 10.

1. Find P(X > 10).

2. Find P(−20 < X < 15).

3. Find the value of x such that P(X > x) = 0.05.

47



Problem

Suppose that X ∼ N(µ, σ2).

1. Find P(|X − µ| ≤ 0.675σ).

2. Find the value of c in terms of σ such that

P(µ− c ≤ X ≤ µ+ c) = 0.95.
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Problem

Consider a sample X1, . . . ,X9 of normally distributed random variables

with mean µ and variance σ2 = 1. What is the probability that

|µ− X̄ | ≤ 0.3?
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Problem

An actual voltage of new 1.5-volt battery has the probability density

function

f (x) = 5, 1.4 ≤ x ≤ 1.6.

Estimate the probability that the sum of the voltages from 120 new

batteries lies between 170 and 190 volts.
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Problem

The germination time in days of a newly planted seed has the

probability density function

f (x) = 0.3e−0.3x , x ≥ 0.

If the germination times of different seeds are independent of one

another, estimate the probability that the average germination time of

2000 seeds is between 3.1 and 3.4 days.
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Problem

Calculate the following probabilities by using normal approximation with

continuity correction.

1. Let X be a binomial random variable with n = 10 and p = 0.7. Find

P(X ≥ 8).

2. Let X be a binomial random variable with n = 15 and p = 0.3. Find

P(2 ≤ X ≤ 7).

3. Let X be a binomial random variable with n = 9 and p = 0.4. Find

P(X ≤ 4).

4. Let X be a binomial random variable with n = 14 and p = 0.6. Find

P(8 ≤ X ≤ 11).
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Answers
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Problem 1.

1.

∫ 1

0

cx2 dx =
c

3
= 1. Thus, we have c = 3.

2. F (t) =


0 if x < 0;

t3 if 0 ≤ x ≤ 1;

1 if x > 1.

3. P(.1 ≤ X < .5) =

∫ 0.5

0.1

3x2 dx =
[
x3
]0.5
0.1

= 0.124
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Problem 2.

1. E [X ] =

∫ 1

0

x(2x) dx =

[
2x3

3

]1
0

=
2

3

2. E [X 2] =

∫ 1

0

x2(2x) dx =

[
x4

2

]1
0

=
1

2
Then we obtain

Var(X ) = E [X 2]− (E [X ])2 = 1
2 −

(
2
3

)2
= 1

18 .
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Problem 3.

Let X be the life time of the electronic component.

1. P(X ≤ 10) = 1− e−(0.2)(10) ≈ 0.8647

2. P(5 ≤ X ≤ 15) = e−(0.2)(5) − e−(0.2)(15) ≈ 0.3181
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Problem 4.

Let X be a normal random variable with µ = 70 and σ = 3.

1. P(X ≥ (6)(12)) = 1− Φ

(
72− 70

3

)
≈ 1− Φ(0.67) ≈ 0.25

2. In centimeters, the height becomes (2.54)X , and it is normally

distributed with µ = (2.54)(70) = 177.8 and σ = (2.54)(3) = 7.62.
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Problem 5.

1. P(X > 10) = 1− Φ

(
10− 5

10

)
= 1− Φ(0.5) = 0.3085.

2. P(−20 < X < 15) = Φ

(
15− 5

10

)
− Φ

(
−20− 5

10

)
=

Φ(1)− Φ(−2.5) = 0.8351.

3. Since P(X > x) = 1− Φ

(
x − 5

10

)
= 0.05, we must have

Φ
(
x−5
10

)
= 0.95. By using the normal distribution table, we can find

x − 5

10
≈ 1.64. Thus, x ≈ 5 + (10)(1.64) = 21.4.
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Problem 6.

1. P(|X − µ| ≤ 0.675σ) = P(−0.675σ ≤ X − µ ≤ 0.675σ) =

Φ(0.675)− Φ(−0.675) ≈ 0.5

2. P(µ− c ≤ X ≤ µ+ c) = 0.95 implies

P

(
X − µ

σ
≤ c

σ

)
= Φ

( c
σ

)
= 0.975. Then we can find

c

σ
≈ 1.96.

Thus, c = 1.96σ.
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Problem 7.

By the central limit theorem, X̄ has a normal distribution with mean µ

and variance 1
9 .

P(|µ− X̄ | ≤ 0.3) = P(−0.3 + µ ≤ X̄ ≤ 0.3 + µ)

= Φ

(
0.3

1/3

)
− Φ

(
−0.3

1/3

)
= Φ(0.9)− Φ(−0.9) = 0.6318
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Problem 8.

Let X1, . . . ,X120 be the voltage of each battery, having the pdf f (x).

Since µ = E [Xi ] =
1.4+1.6

2 = 1.5 and σ2 = (1.6−1.4)2

12 = 0.0033, the sum

Y =
∑120

i=1 Xi is approximately distributed as

N(120µ, 120σ2) = N(180, 0.4). Thus, we obtain

P(170 ≤ Y ≤ 190) = Φ

(
190− 180√

0.4

)
− Φ

(
170− 180√

0.4

)
≈ 1
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Problem 9.

Let X1, . . . ,X2000 be the germination time of individual seed, having the

exponential distribution with λ = 0.3. Since µ = E [Xi ] = 1/0.3 ≈ 3.33

and σ2 = Var(Xi ) = 1/(0.3)2 ≈ 11.11, the sample mean X̄ is

approximately distributed as N(µ, σ2/n) = N(3.33, 0.0056). Thus,

P(3.1 ≤ X̄ ≤ 3.4) = Φ

(
3.4− 3.33√

0.0056

)
− Φ

(
3.1− 3.33√

0.0056

)
≈ 0.82
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Problem 10.

1. P(X ≥ 8) = 1− Φ

(
7.5− (10)(0.7)√
(10)(0.7)(0.3)

)
≈ 0.365

2. P(2 ≤ X ≤ 7) = Φ

(
7.5− (15)(0.3)√
(15)(0.3)(0.7)

)
−Φ

(
1.5− (15)(0.3)√
(15)(0.3)(0.7)

)
≈

0.909

3. P(X ≤ 4) = Φ

(
4.5− (9)(0.4)√
(9)(0.4)(0.6)

)
≈ 0.7299

4. P(8 ≤ X ≤ 11) =

Φ

(
11.5− (14)(0.6)√
(14)(0.6)(0.4)

)
− Φ

(
7.5− (14)(0.6)√
(14)(0.6)(0.4)

)
≈ 0.6429
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