Statistical Inference using R



Prepare data set.

You can prepare the data by downloading it from brick.txt.

"Brick Weights" «— header
1.099
1.103
1.154

Veta velies

1.206
1.066
1.132

The first line of the file, a part of which is shown above, is called a
header, represents a variable name of the data set. To give variable
names properly in the first line of the file, you should put it in the
double-quotation marks (").



Read data file.

The column data directly below the variable name are the actual data
which should start from the second line. We now read the file
“brick.txt” into data frame in the R programming by using

read.table() function as follows: T e enser b carby chrscnry

> BrickData <- read.table("brick.txt", header=T)
t Lile, cheste L)

NoOTE: “<-" in R programming is supposed to play a role of “=" as in
many other computer languages. Also, R programming environment is
interactive, known as an “interpretor.” For example, if you type “x <-
3.14", then you can find that “x” has the value 3.14 by simply typing

w_n

x" (then return).



Declare data frame in use.

Before doing anything else, we have to declare the data frame BrickData
in use by using attach function:

> attach(BrickData)

Now we can use the variable Brick.Weights. Here, the spaces (' ') in
“brick.txt” are replaced with the periods (".") inside the R
programming. To see what variables are available, use names function as

follows:

> names (BrickData)
[1] "Brick .Weights"



Use variable name in data frame.

To calculate sample statistics, call the summary() command with
variable name Brick. Weights.

> summary (Brick.Weights)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.874 1.083 1.110 1.111 1.140 1.257

Note that the sample size cannot be found from the summary ()
command. To find out the data size, use the length() command.

> length(Brick.Weights)
[1] 125



Use graphics for data exploration.

To draw the histogram, we can use hist function as follows:
> hist(Brick.Weights)

We can change the “number of bands" by assigning the number to
breaks in hist function as follows:

> hist(Brick.Weights, breaks=10)

NOTE: “breaks=10" is an optional argument. The argument is not
necessarily specified, and it is set automatically if it is not given.



Use graphics, continued.

We can also add a “color” and a “main title” as follows:

> hist(Brick.Weights, breaks=10, col="gray", main="Brick
Weights in kg")

We can draw the boxplot by using boxplot function:

> boxplot(Brick.Weights, col="green", main="Brick Weights in
kgll)



QQ normal plot.

The quantile-quantile normal plot (QQ normal plot) is one of the
graphical methods to assess a fit of the data to a normal distribution.

> ggnorm(Brick.Weights, datax=T)

The values at the x-axis shows data (specified by datax=T), and the
values at the y-axis correspond the quantiles from the standard normal
distribution. For example, the values between -1.0 and 1.0 at the vertical
axis consist of approximately 68% of the entire values, which corresponds
to the sample data between  — o and p + o (at the x-axis) if the data
are normally distributed. Thus, the straight line of plots indicate a fit to
a normal distribution.

> qqline(Brick.Weights, datax=T,col=’green’)
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Statistical inference.

The hypothesis testing for population mean p can be done by the t.test
command. The t.test command calculate the p-value accordingly as

1. Ha: p# po (if alternative="two.sided" is specified); ho-soded €3

2. Ha: p> po (if alternative="greater" is specified);
e A

one-sided 7e5+
3. Ha: p < po (if alternative="1less" is specified).

For example, if we construct the hypothesis testing problem one-saled ¢

o (S, m.. T — Tha mud by
ved @:l versus >1.1 Confiszenn vea
ue Cp= (H 0:71::4 4 Yo cleg,
Muall hyeoz 2 mis A e s ihwmhla d
then the t.test commg?rvld must include the options'mu=1.1 and
alternative="greater". The t.test command will return the

following output on the display.



Statistical inference, output.

pat e gl g bypeeess Hy o oz L
. . . . {/-."-
> t.test(Brick.Weights, alternative="greater")
)df = 124, valie — 001402
value = 0.01402)

alternative hypothesis: true mean is greater/than 1.1

Test

e 99 percent confidence interval:
(1.102680 Inf /

sample estimates: o o a0F v.c0 prvelue
mean of x i A
1.110536 heghly medermgy MO Rkt
. SGuificant Fgnifiane
(Mnl—"u‘)‘nﬁw.f"‘:‘nﬁ'

The above result indicates that (i) t-statistic is 2.2227, (ii) p-value is
0.01402, and (iii) 95% one-sided confidence interval is (1.102680, co).
Then, we can reject Hy with significance level @ but we cannot reject
Ho with significance level0.01) Thus, there is some evidence that the
average brick weight is more than 1.1, but tmm
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Statistical inference, continued.

When you want the 99% two-sided confidence interval instead of the
default 95% one-sided confidence interval, we can use the option
conf.level=0.99 together with alternative="two.sided" in the
t.test command.

> t.test(Brick.Weights, mu=1.1, alternative="two.sided",
conf.level=0.99)

99 percent confidence interval:
1.098135 1.122937

This gave the 99% two-sided confidence interval (1.098135, 1.122937) for
the population mean of brick weight.
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Inference on Paired Data
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Paired experiment.

A researcher is interested in how a new class of drug treating a patient
actually affects the patient’s heart rate reduction. The pairs of heart rate
; el
reduction g
(X17 Yl)a BERE) (Xna Yn)

of n participants under the standard drug and after taking the new drug
are measured. The data file “heart.csv” of heart rate reductions is

prepared in the “comma-separated values” (csv).
Visiahle names

40,140.1,140.8

ooy pe Rl 13



Read data set into R.

We can read the csv file by using raed.csv(), and declare the use of
data frame HeartData by attach().

> HeartData <- read.csv("heart.csv")
> attach(HeartData)

The summary command will show you the variable names and their
summary statistics. These variable names are Patient, StdDrug and
NewDrug as indicated in the output below.

> summary (HeartData)

Patient StdDrug NewDrug

Min. : 1.00 Min. :21.60 Min. :22.40

1st Qu.:10.75 1st Qu.:27.45 1st Qu.:30.80
Median :20.50 Median :32.00 Median :34.25
Mean :20.50 Mean :31.18 Mean :33.84
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Graphical presentations.

Here we need the boxplot for each of StdDrug and NewDrug to compare
the two samples graphically. The boxplot command will create the two
boxplots in one figure.

> boxplot(StdDrug, NewDrug, names=c("Standard Drug",
"New Drug"), col="gray", ylab="Heart rate reductions",
main="Boxplots for Heart Rate Reductions")
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Statistical inference.

4 M‘Ji“:f)l‘}lz ks Ha:H"H\'Hz"'O w5, HA:P‘=PI'HE<-D
The paired sample test can be done by the t.test() command with the
option paired=T. Suppose that we want to test

Ho: p1=p2 versus Ha: @Mz

where p1 and o are the true means of heart rate reductions with the
standard drug and the new drug, respectively.

> t.test(StdDrug, NewDrug, alternative="less", paired=T)
a= —4.591@ df = 39, p-value = 2.974e-05

alternative hypothesismans is less than 0

percent confidence interval: lv e dillevence

-Inf -1.66128

sample estimates:
mean of the differences

-2.655
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Statistical inference, continued.

The output in the previous page shows that (i) t-statistic is —4.5016, (ii)
p-value is 2.974 x 10>, and (ii) the 95% one-sided confidence

interval (—oo, —1.661287) for the difference (1 — p2). Thus, we can
reject Hp with significance level 0.01. To obtain the@one—sided

confidence interval, add the option “conf.level=0.99" as follows.

> t.test(StdDrug, NewDrug, alternative="less", paired=T,

{
w.«,}mlmu.hw leve | @
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Inference on Two Independent Samples

18



Experimental studies.

We often want to compare two independent samples. For example, a
researcher tests the difference of nerve conductivity speed between
healthy persons and patients with nerve disorder. The study considers a
control group in which healthy subjects are examined, and an
experimental group in which subjects with nerve disorder are
participated. As a result of experiment, we obtain the measurements

Xiyoooy X
D They ore ot peired

of the subjects from the control group, and the measurements

I\. n»thj, L T
Vi, Y &

of the subjects from the experimental group.
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Experimental studies, continued.

It is assumed that Xi,..., X, and Yi,..., Y, are independent and
normally distributed with (u1,0%) and (u2,03), respectively. Large
sample sizes (n, m > 30) ensure that the tests are appropriate even if

they are not normally distributed. Then it becomes the hypothesis testing
Clognn

problem SR
& a
Ho: py = po | versus |Ha: ul#ug.ie.a Wo- He % O

where p1 and o are the respective population means of the control and
the experimental groups
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Pooled test procedure.

Let S, and S, be the sample standard deviations constructed from

X1,..., X, and Yi,..., Yy, respectively. When it is assumed that
2 iﬁx-—;)‘
2 2 2 = a=m T

0-1 = 0’2 =0 S n—\

we can estimate o2 by the pooled sample variance

(n—l)Sf—!—(m—l)S}% i "J'_(x .K)*Z(‘f e

Amp

S22 = -
P n.+.n,_.2 ﬂ1w1-2

, . degrec o
Then we can construct (1 — a)-level confidence interval for the ¢ ** reelo

population mean difference p; — po by
T,

(X =Y) £ ta2nim2Sp \/% + 1

Mem————
/"F##dd_F__‘q_hﬂ_hhﬂhh_“—=~——————~___——4 G;H?
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Pooled test procedure, continued.

Reeell T= X = b
e T 3/0A

s . e
oy o= bar(k) = T

The test statistic

has the t-distribution with (n+ m — 2)“dAZ:grees of free(;rom under the null
hypothesis Hy. Thus, we rejmsis Hp with significant

level ov when the observed value t of T satisfies [t| > t4/5 pim—2. Or,
equivalently we can compute the p-value

P =2xP(Y >t|)
N ———

©
with Y having a t-distribution with (n 4+ m — 2) degrees of freedom, and
reject Hy when p* < a.
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General procedure.

Under the null hypothesis Hp, the test statistic
S—_; = Var (=T )

- (lr bcler He
= V&r{x? T var (Y )
52 « 5
-1z} s T T ﬁ-: 2 6_’!:

has approximately the t- dlstrlbutlon wnth v degree of freedom where v is

the nearest integer to

Then we can construct (1 — a)-level confidence interval for the

population mean difference p1; — u by /T“Hf-hd tonfidome daa-r
_ 52 s 1ty s s “postas
X =YtV 5+ 5 then the €2 sl ot
Hot Wimpa =D wvs. Hy: e “omtesa D g
& }"t I7ES =D ‘J"““MV; P
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General procedure, continued.

We reject the null hypothesis Hy with significant level o when the
observed value t of T satisfies [t| > t,/,. Or, equivalently we can
compute the p-value

P =2xP(Y > t])

with Y having a t-distribution with v degrees of freedom, and reject Hyp
when p* < a.

24



Read data set into R.

The data set of nerve conductivity speeds is prepared in a 32-by-2 table.
The first column of the table represents@@_ﬁm data, and the
second column represents@disordered subject data. The asterisk (*) in
the last 5 entries indicates that there is a difference in the column data
sizes.

Healthy Disorder
52.20 50.68

55.90 53.98
52.23 *
54.90 *
55.64 *
54.48 *

52.89 *
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Read data set into R, continued.

To ignore the symbol (*) in reading the data file, the option
“na.strings="#"" can be used in read.table() command. Now we
read them into the data frame NerveData as follows.

> NerveData <- read.table("nerve.txt", header=T,
na.strings="x*")

26



Data exploration.

Declare the use of data frame (attach), and then find out the variable
names and their summary statistics (summary) as follows.

> attach(NerveData)

> summary (NerveData)
Healthy Disorder

Min. :52.20 Min. :44.86

The output from the summary command reveals Healthy and Disorder as
the variable names. The boxplot () will be used to compare the two
samples.

> boxplot(Healthy, Disorder, names=c("Healthy", "Nerve
Disorder"), col="gray", ylab="Conductivity speeds",
main="Boxplots for Nerve conductivity speeds")
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Statistical inference.

The t.test() can be used again for the two independent samples.
Suppose that our hypothesis testing problem is

Ho: pa=p2 versus  Ha:pn > o e p-pe» 0

where p; and pp are the true means of nerve conductivity speed for
healthy subjects and nerve disorder subjects, respectively.

> t.test(Healthy, Disorder, alternative='"greater")
data: Healthy and Disorder

df = 32.684, p-value

alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:

4.538828 NA (4.v39 , 00)

sample estimates:

mean of x mean of y

53.99438 48.59370
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Statistical inference, continued.

The result shows that (i) t-statistic is 10.608, (ii) p-value is

2.032 x 107*2, and (iii) the 95% one-sided confidence interval is
(4.538828, o0) for the difference (p1 — p2). Thus, we can reject Hp. If we
wish to obtain the 99% two-sided confidence interval, then we use
“conf.level=0.99" and “alternative="two.sided"" as follows.

> t.test(Healthy, Disorder, alternative="two.sided",

conf.level=0.99)

The default call corresponds to general procedure. If equal variances are
assumed, the pooled procedure can be used. In this case we need the
option “var.equal=T".

> t.test(Healthy, Disorder, alternative="two.sided",
conf.level=0.99, var.equal=T)
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Manipulate two data frames.

An engineer compares the sample of paint thicknesses (1ine-a.txt)
from production line A with a sample of paint thicknesses (1ine-b.txt)
from production line B. What conclusions should the engineer draw?
Here we have two data sets in 1ine-a.txt and line-b.txt. They
should be read into two data frames PA and PB as follows.

> PA <- read.table("line-a.txt", header=T)
> PB <- read.table("line-b.txt", header=T)
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Manipulate two data frames, continued.

We can find out the variable name and summary statistics (summary) for
each data frame as follows.

> summary (PA)
Paint. Thicknesses.in.mm
Min. :0.0760

> summary (PB)
Paint. Thicknesses
Min. :0.0230

It reveals that the data frame PA has the variable
Paint. Thicknesses.in.mm and that the data frame PB has the variable
Paint. Thicknesses.
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Manipulate two data frames, continued.

In order to manipulate the two data frames PA and PB simultaneously,
we call the variables directly via

PA$ Paint. Thicknesses.in.mm

PB$Paint. Thicknesses
without declaring attach. Then boxplot and t.test can be carried out

as follows.

> boxplot(PA$Paint.Thicknesses.in.mm, PB$Paint.Thicknesses,
names=c("Line A", "Line B"), ylab="Paint thicknesses (mm)",

main="Boxplots for Paint thickness")
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Manipulate two data frames, continued.

> t.test(PA$Paint.Thicknesses.in.mm, PB$Paint.Thicknesses,
alternative="two.sided")
data: PAS$Paint.Thicknesses.in.mm and PB$Paint.Thicknesses
t = 2.5732, df = 154.713, p-value = 0.01102
alternative: true difference in means is not equal to 0
95 percent confidence interval:
(0.007172363,0.054576254 ) o i $5%% LI tov P He
sample estimates:
mean of x mean of y

0.2318133 0.2009390

The result shows that the p-value for the hypthesis testing problem

Cliitn 1 They g
Ho: p1 = po versus dﬁLE(reh,t

is 0.01102. Thus, there is a imm that the paint
thicknesses from production line A and those from pFoduction line B are
different.

33



Prives] Pata

rewae avsd ey

E‘-rfuazavy vecble R‘-Jfoo&-r&- véanzble

Simple Linear Regression

34



Linear regression model.

Suppose that the researcher wants to find how the temperature of factory
affects the labor efficiency to unload a truck. We conduct n independent
experiments with different levels of temperature. The data set consists of
the unloading time Y1,..., Y, paired with the respective temperature

X1,...,Xp of the factory. csune g
d“‘—f
T~

Temperature  Unloading time

X1 Y1

Xn Yn
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Linear regression model, continued.

Y
Fevor &-_,_,fi? Y= fo+ P‘ gt £,

x

The relationship between the explanatory variable x; and the response
variable Y; can be approximated by the simple linear regression model

Erver torm atssmad 7o be @ novmsd
\/,:Bo+,81x;+i:1,...,n, (8.1)

where ¢; is a “random error” due to other factors of condition. The
standard assumption is that the random error terms €y, ..., €, are iid
normally distributed random variables with common variance o?.
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Parameter estimates.

The coefficients Sy and Sy of the linear regression model (8.1) are called
the intercept and the slope parameters, respectively. The point
estimates Bo and Bl of the parameters 3y and 8; become

Bo=Y — X and B1=%,

where the values %, Y, S,, and S,y are computed as in the following

table.
Variables Mean Sum of squares
1 n n
E X=_ ! = . %)?
xplanatory X = X; Six Z(x, X)
i=1 i=1
- 1< n _
R Y=-3"% Sy=3(x-x)(Yi-Y
esponse - ; ¥ ’z:;(x X)( )
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Statistical properties.

By constructing the residual sum of squares (RSS)

n
A A )2
RSS = (Vi — Bo— Bixi)?,
i=1
the point estimate 2 of the variance o becomes
2 RSS T terrs ph bypuihery
T2 fe: fu=o

Then the statistics are summarized in the following table.

Coefficient  Estimate Standard error t-value
~ . /1 x2
Bo Bo=Y =pix So=064/-+—
n Sy
A S o
= — S =
b1 b1 5. 1 o,
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Read and declare a data set.

We use the data set of unloading time.
UnloadingTime Temperature
64 52

53 68
58 64

To read the data set, we use the read.table.

> TimeData <- read.table("time.txt", header=T)

39



Declare and use data set.

We declare the use of data. To see sample statistics with variable names,
we can use the summary (). Then, the first line of the output below
displays the variable names Time and Temperature.

> attach(TimeData)

> summary (TimeData)
Time Temperature

Min. :38.00 Min. :52.00

The plot function can be used to show the scatter plot of temperature
against time.

> plot(Temperature, Time, main="Scatter plot of temperature
against time")
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Statistical inference.

To fit the data frame TimeData into a simple linear model, the 1m
function will be used and the result must be saved in a variable. Then,
the summary function with the variable produced by the 1m function can
display the result.

> TimeLM <- 1m(Time ~ Temperature)

> summary (TimeLM) M

p-w—lwc ln-ur H.: =0 H, =
Coefficients: b i 0

Estimate Std.Error t value Pr(>|t|) /

—i(Intercept)\36.1935 16.9515 2.135 0.0585, 5 \f. 51 145, o2tbx - 4 4 ba
slspe Temperature’0.2659 0.2383 1.116 e ‘

Signif. codes: 0 “***’ 0.001 ‘** 0.01 *' 0.05 " 0.1 ‘' 1
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Statistical inference, continued.

In finding a trend, the result shows that (i) the estimate f1 of slope is

0.2659, and (ii) the p-value iswhich is insignificant. Thus, we

cannot reject the null hypothesis Hy : 51 = 0, and therefore, there is not
N e
sufficient evidence to conclude that the unloading time depends on the

temperature. And we should conclude that no relationship has been
established between the two variables. As for the intercept, the result
shows that (i) the estimate fy of intercept is 36.1935, and (ii) the
p-value is 0.0585, which is moderately significant. To see the fitted line
graphically, we can use the abline function. It adds the fitted line on
the scatter plot which was previously drawn.

> ab{ine(TimeLM)

bw pe bt b
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Residual analysis.

To assess the fit graphically, we can use the following assortment of plots:

e Residual-Fit spread plot compares the spread of the fitted values
with the spread of the residuals.

e Normal Q-Q plot provides a visual test of the assumption that the
model’s error terms are normally distributed.

We can create these diagnostic plots by using plot function with the
model variable name TimelL M.

> plot(TimelM, which=1)
> plot(TimelM, which=2)
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The predict () function is applicable for computation of predicted
values corresponding to the observations of dataset. Assume that we
wish to predict the unloading times respectively for different
temperatures 50, 60, and 70. The predicted values are calculated in the
linear regression model as follows:

new <- data.frame(Temperature=c(50, 60, 70))

new

predict(TimelM, new, interval="confidence", level=0.95)

First, a new data frame with the new values of the explanatory variables
is constructed. It has three observations for the variable Temperature. It
is important that the variable has the same name as the explanatory
variable in the original dataset. The predict() command asks R to
calculate the predicted values. The level of the confidence intervals may
be changed with the level option.

a4



Assignment No.8
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Computer Assignment.

Investigate the following statistical studies, and write a short report on
your own statistical analysis. Your report must include:

1. sample statistics such as mean, median, and standard deviation;

2. graphical presentations (histogram, boxplot, or scatter plot) of data;
3. descriptions of hypothesis testing (null and alternative hypothesis);
4.

results of formal statistical inference (p-value), and your conclusions.
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Study 1: Red blood cell adhesion.

Data set: bloodcell.txt

Researchers into the genetic disease sickle cell anemia are interested in
how red blood cells adhere to endothelial cells, which form the innermost
lining of blood vessels. A set of 14 blood samples are obtained, and each
sample is split in half. One half of the blood sample is profuse over an
endothelial monolayer of type A and the other half of the blood sample is
profused over an endothelial monolayer of type B. The two types differs
in respect to the stimulation conditions of the endothelial cells. The data
represent the number of adherent red blood cells per mm?. Is there any
evidence that the different stimulation conditions affect the adhesion of
red blood cells?
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Study 2: Service times.

Data sets: afternoon.txt and morning.txt

The data set in afternoon.txt shows the service times (in second) of
customers at a fast-food restaurant who were served between 2:00 and
3:00 on a Saturday afternoon. In addition, morning.txt shows the
service times of customers at the fast-food restaurant who were served
between 9:00 and 10:00 in the morning on the same day. What do these
data sets tell us about the difference between the service times at these
two times of day?
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Study 3: Aerobic fitness.

Data set: vo2max.txt

The data concern the aerobic fitness of a sample of twenty male subjects
collected at the Health and Performance Sciences Laboratory at Georgia
Tech. An exercising individual breathes through an apparatus that
measures the amount of oxygen in the inhaled air which is used by the
individual. The maximum value per unit time of the utilized oxygen is
then scaled by the person’s body weight to come up with a variable
VO2-max, which is a general indication of the aerobic fitness of the
individual. Fit a linear regression model with VO2-max as the dependent
variable (the response variable) and age as the explanatory variable. Is it
clear that on average aerobic fitness decreases with age?
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