
Statistical Inference using R
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Prepare data set.

You can prepare the data by downloading it from brick.txt.

”Brick Weights”

1.099

1.103

1.154

...

...

...

1.206

1.066

1.132

The first line of the file, a part of which is shown above, is called a

header, represents a variable name of the data set. To give variable

names properly in the first line of the file, you should put it in the

double-quotation marks (").
2



Read data file.

The column data directly below the variable name are the actual data

which should start from the second line. We now read the file

“brick.txt” into data frame in the R programming by using

read.table() function as follows:

> BrickData <- read.table("brick.txt", header=T)

Note: “<-” in R programming is supposed to play a role of “=” as in

many other computer languages. Also, R programming environment is

interactive, known as an “interpretor.” For example, if you type “x <-

3.14”, then you can find that “x” has the value 3.14 by simply typing

“x” (then return).
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Declare data frame in use.

Before doing anything else, we have to declare the data frame BrickData

in use by using attach function:

> attach(BrickData)

Now we can use the variable Brick.Weights. Here, the spaces (’ ’) in

“brick.txt” are replaced with the periods (’.’) inside the R

programming. To see what variables are available, use names function as

follows:

> names(BrickData)

[1] "Brick.Weights"
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Use variable name in data frame.

To calculate sample statistics, call the summary() command with

variable name Brick.Weights.

> summary(Brick.Weights)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.874 1.083 1.110 1.111 1.140 1.257

Note that the sample size cannot be found from the summary()

command. To find out the data size, use the length() command.

> length(Brick.Weights)

[1] 125
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Use graphics for data exploration.

To draw the histogram, we can use hist function as follows:

> hist(Brick.Weights)

We can change the “number of bands” by assigning the number to

breaks in hist function as follows:

> hist(Brick.Weights, breaks=10)

Note: “breaks=10” is an optional argument. The argument is not

necessarily specified, and it is set automatically if it is not given.
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Use graphics, continued.

We can also add a “color” and a “main title” as follows:

> hist(Brick.Weights, breaks=10, col="gray", main="Brick

Weights in kg")

We can draw the boxplot by using boxplot function:

> boxplot(Brick.Weights, col="green", main="Brick Weights in

kg")
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QQ normal plot.

The quantile-quantile normal plot (QQ normal plot) is one of the

graphical methods to assess a fit of the data to a normal distribution.

> qqnorm(Brick.Weights, datax=T)

The values at the x-axis shows data (specified by datax=T), and the

values at the y -axis correspond the quantiles from the standard normal

distribution. For example, the values between -1.0 and 1.0 at the vertical

axis consist of approximately 68% of the entire values, which corresponds

to the sample data between µ− σ and µ+ σ (at the x-axis) if the data

are normally distributed. Thus, the straight line of plots indicate a fit to

a normal distribution.

> qqline(Brick.Weights, datax=T,col=’green’)

8





Statistical inference.

The hypothesis testing for population mean µ can be done by the t.test

command. The t.test command calculate the p-value accordingly as

1. HA : µ ̸= µ0 (if alternative="two.sided" is specified);

2. HA : µ > µ0 (if alternative="greater" is specified);

3. HA : µ < µ0 (if alternative="less" is specified).

For example, if we construct the hypothesis testing problem

H0 : µ = 1.1 versus HA : µ > 1.1

then the t.test command must include the options mu=1.1 and

alternative="greater". The t.test command will return the

following output on the display.
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Statistical inference, output.

> t.test(Brick.Weights, mu=1.1, alternative="greater")

t = 2.2227, df = 124, p-value = 0.01402

alternative hypothesis: true mean is greater than 1.1

95 percent confidence interval:

1.102680 Inf

sample estimates:

mean of x

1.110536

The above result indicates that (i) t-statistic is 2.2227, (ii) p-value is

0.01402, and (iii) 95% one-sided confidence interval is (1.102680,∞).

Then, we can reject H0 with significance level 0.05, but we cannot reject

H0 with significance level 0.01. Thus, there is some evidence that the

average brick weight is more than 1.1, but the evidence is modestly

significant.
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Statistical inference, continued.

When you want the 99% two-sided confidence interval instead of the

default 95% one-sided confidence interval, we can use the option

conf.level=0.99 together with alternative="two.sided" in the

t.test command.

> t.test(Brick.Weights, mu=1.1, alternative="two.sided",

conf.level=0.99)

..........

..........

99 percent confidence interval:

1.098135 1.122937

This gave the 99% two-sided confidence interval (1.098135, 1.122937) for

the population mean of brick weight.
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Inference on Paired Data
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Paired experiment.

A researcher is interested in how a new class of drug treating a patient

actually affects the patient’s heart rate reduction. The pairs of heart rate

reduction

(X1,Y1), . . . , (Xn,Yn)

of n participants under the standard drug and after taking the new drug

are measured. The data file “heart.csv” of heart rate reductions is

prepared in the “comma-separated values” (csv).

Patient, StdDrug, NewDrug

1, 28.5, 34.8

2, 26.6, 37.3

...

...

40, 40.1, 40.8
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Read data set into R.

We can read the csv file by using raed.csv(), and declare the use of

data frame HeartData by attach().

> HeartData <- read.csv("heart.csv")

> attach(HeartData)

The summary command will show you the variable names and their

summary statistics. These variable names are Patient, StdDrug and

NewDrug as indicated in the output below.

> summary(HeartData)

Patient StdDrug NewDrug

Min. : 1.00 Min. :21.60 Min. :22.40

1st Qu.:10.75 1st Qu.:27.45 1st Qu.:30.80

Median :20.50 Median :32.00 Median :34.25

Mean :20.50 Mean :31.18 Mean :33.84

...
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Graphical presentations.

Here we need the boxplot for each of StdDrug and NewDrug to compare

the two samples graphically. The boxplot command will create the two

boxplots in one figure.

> boxplot(StdDrug, NewDrug, names=c("Standard Drug",

"New Drug"), col="gray", ylab="Heart rate reductions",

main="Boxplots for Heart Rate Reductions")
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Statistical inference.

The paired sample test can be done by the t.test() command with the

option paired=T. Suppose that we want to test

H0 : µ1 = µ2 versus HA : µ1 < µ2

where µ1 and µ2 are the true means of heart rate reductions with the

standard drug and the new drug, respectively.

> t.test(StdDrug, NewDrug, alternative="less", paired=T)

t = -4.5016, df = 39, p-value = 2.974e-05

alternative hypothesis: true difference in means is less than 0

95 percent confidence interval:

-Inf -1.661287

sample estimates:

mean of the differences

-2.655
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Statistical inference, continued.

The output in the previous page shows that (i) t-statistic is −4.5016, (ii)

p-value is 2.974× 10−5, and (ii) the 95% one-sided confidence

interval (−∞,−1.661287) for the difference (µ1 − µ2). Thus, we can

reject H0 with significance level 0.01. To obtain the 99% one-sided

confidence interval, add the option “conf.level=0.99” as follows.

> t.test(StdDrug, NewDrug, alternative="less", paired=T,

conf.level=0.99)
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Inference on Two Independent Samples
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Experimental studies.

We often want to compare two independent samples. For example, a

researcher tests the difference of nerve conductivity speed between

healthy persons and patients with nerve disorder. The study considers a

control group in which healthy subjects are examined, and an

experimental group in which subjects with nerve disorder are

participated. As a result of experiment, we obtain the measurements

X1, . . . ,Xn

of the subjects from the control group, and the measurements

Y1, . . . ,Ym

of the subjects from the experimental group.
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Experimental studies, continued.

It is assumed that X1, . . . ,Xn and Y1, . . . ,Ym are independent and

normally distributed with (µ1, σ
2
1) and (µ2, σ

2
2), respectively. Large

sample sizes (n,m ≥ 30) ensure that the tests are appropriate even if

they are not normally distributed. Then it becomes the hypothesis testing

problem

H0 : µ1 = µ2 versus HA : µ1 ̸= µ2.

where µ1 and µ2 are the respective population means of the control and

the experimental groups
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Pooled test procedure.

Let Sx and Sy be the sample standard deviations constructed from

X1, . . . ,Xn and Y1, . . . ,Ym, respectively. When it is assumed that

σ2
1 = σ2

2 = σ2

we can estimate σ2 by the pooled sample variance

S2
p =

(n − 1)S2
x + (m − 1)S2

y

n +m − 2

Then we can construct (1− α)-level confidence interval for the

population mean difference µ1 − µ2 by

(X̄ − Ȳ )± tα/2,n+m−2Sp

√
1
n + 1

m
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Pooled test procedure, continued.

The test statistic

T =
X̄ − Ȳ

Sp

√
1
n + 1

m

has the t-distribution with (n+m− 2) degrees of freedom under the null

hypothesis H0. Thus, we reject the null hypothesis H0 with significant

level α when the observed value t of T satisfies |t| > tα/2,n+m−2. Or,

equivalently we can compute the p-value

p∗ = 2× P(Y ≥ |t|)

with Y having a t-distribution with (n +m − 2) degrees of freedom, and

reject H0 when p∗ < α.
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General procedure.

Under the null hypothesis H0, the test statistic

T =
X̄ − Ȳ√
S2
x

n +
S2
y

m

has approximately the t-distribution with ν degree of freedom, where ν is

the nearest integer to (
S2
x

n +
S2
y

m

)2

S4
x

n2(n−1) +
S4
y

m2(m−1)

.

Then we can construct (1− α)-level confidence interval for the

population mean difference µ1 − µ2 by

(X̄ − Ȳ )± tα/2,ν

√
S2
x

n +
S2
y

m
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General procedure, continued.

We reject the null hypothesis H0 with significant level α when the

observed value t of T satisfies |t| > tα/2,ν . Or, equivalently we can

compute the p-value

p∗ = 2× P(Y ≥ |t|)

with Y having a t-distribution with ν degrees of freedom, and reject H0

when p∗ < α.
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Read data set into R.

The data set of nerve conductivity speeds is prepared in a 32-by-2 table.

The first column of the table represents 32 healthy subject data, and the

second column represents 27 disordered subject data. The asterisk (*) in

the last 5 entries indicates that there is a difference in the column data

sizes.

Healthy Disorder

52.20 50.68

...

...

55.90 53.98

52.23 *

54.90 *

55.64 *

54.48 *

52.89 *
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Read data set into R, continued.

To ignore the symbol (*) in reading the data file, the option

“na.strings="*"” can be used in read.table() command. Now we

read them into the data frame NerveData as follows.

> NerveData <- read.table("nerve.txt", header=T,

na.strings="*")
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Data exploration.

Declare the use of data frame (attach), and then find out the variable

names and their summary statistics (summary) as follows.

> attach(NerveData)

> summary(NerveData)

Healthy Disorder

Min. :52.20 Min. :44.86

...

The output from the summary command reveals Healthy and Disorder as

the variable names. The boxplot() will be used to compare the two

samples.

> boxplot(Healthy, Disorder, names=c("Healthy", "Nerve

Disorder"), col="gray", ylab="Conductivity speeds",

main="Boxplots for Nerve conductivity speeds")
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Statistical inference.

The t.test() can be used again for the two independent samples.

Suppose that our hypothesis testing problem is

H0 : µ1 = µ2 versus HA : µ1 > µ2

where µ1 and µ2 are the true means of nerve conductivity speed for

healthy subjects and nerve disorder subjects, respectively.

> t.test(Healthy, Disorder, alternative="greater")

data: Healthy and Disorder

t = 10.608, df = 32.684, p-value = 2.032e-12

alternative hypothesis: true difference in means is greater than 0

95 percent confidence interval:

4.538828 NA

sample estimates:

mean of x mean of y

53.99438 48.59370
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Statistical inference, continued.

The result shows that (i) t-statistic is 10.608, (ii) p-value is

2.032× 10−12, and (iii) the 95% one-sided confidence interval is

(4.538828,∞) for the difference (µ1 − µ2). Thus, we can reject H0. If we

wish to obtain the 99% two-sided confidence interval, then we use

“conf.level=0.99” and “alternative="two.sided"” as follows.

> t.test(Healthy, Disorder, alternative="two.sided",

conf.level=0.99)

The default call corresponds to general procedure. If equal variances are

assumed, the pooled procedure can be used. In this case we need the

option “var.equal=T”.

> t.test(Healthy, Disorder, alternative="two.sided",

conf.level=0.99, var.equal=T)
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Manipulate two data frames.

An engineer compares the sample of paint thicknesses (line-a.txt)

from production line A with a sample of paint thicknesses (line-b.txt)

from production line B. What conclusions should the engineer draw?

Here we have two data sets in line-a.txt and line-b.txt. They

should be read into two data frames PA and PB as follows.

> PA <- read.table("line-a.txt", header=T)

> PB <- read.table("line-b.txt", header=T)
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Manipulate two data frames, continued.

We can find out the variable name and summary statistics (summary) for

each data frame as follows.

> summary(PA)

Paint.Thicknesses.in.mm

Min. :0.0760

...

> summary(PB)

Paint.Thicknesses

Min. :0.0230

...

It reveals that the data frame PA has the variable

Paint.Thicknesses.in.mm and that the data frame PB has the variable

Paint.Thicknesses.
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Manipulate two data frames, continued.

In order to manipulate the two data frames PA and PB simultaneously,

we call the variables directly via

PA$Paint.Thicknesses.in.mm

PB$Paint.Thicknesses

without declaring attach. Then boxplot and t.test can be carried out

as follows.

> boxplot(PA$Paint.Thicknesses.in.mm, PB$Paint.Thicknesses,

names=c("Line A", "Line B"), ylab="Paint thicknesses (mm)",

main="Boxplots for Paint thickness")
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Manipulate two data frames, continued.

> t.test(PA$Paint.Thicknesses.in.mm, PB$Paint.Thicknesses,

alternative="two.sided")

data: PA$Paint.Thicknesses.in.mm and PB$Paint.Thicknesses

t = 2.5732, df = 154.713, p-value = 0.01102

alternative: true difference in means is not equal to 0

95 percent confidence interval:

0.007172363 0.054576254

sample estimates:

mean of x mean of y

0.2318133 0.2009390

The result shows that the p-value for the hypthesis testing problem

H0 : µ1 = µ2 versus HA : µ1 ̸= µ2

is 0.01102. Thus, there is a fairly significant evidence that the paint

thicknesses from production line A and those from production line B are

different.
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Simple Linear Regression
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Linear regression model.

Suppose that the researcher wants to find how the temperature of factory

affects the labor efficiency to unload a truck. We conduct n independent

experiments with different levels of temperature. The data set consists of

the unloading time Y1, . . . ,Yn paired with the respective temperature

x1, . . . , xn of the factory.

Temperature Unloading time

x1 Y1

...
...

xn Yn
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Linear regression model, continued.

The relationship between the explanatory variable xi and the response

variable Yi can be approximated by the simple linear regression model

Yi = β0 + β1xi + ϵi , for i = 1, . . . , n, (8.1)

where ϵi is a “random error” due to other factors of condition. The

standard assumption is that the random error terms ϵ1, . . . , ϵn are iid

normally distributed random variables with common variance σ2.
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Parameter estimates.

The coefficients β0 and β1 of the linear regression model (8.1) are called

the intercept and the slope parameters, respectively. The point

estimates β̂0 and β̂1 of the parameters β0 and β1 become

β̂0 = Ȳ − β̂1x̄ and β̂1 =
Sxy
Sxx

,

where the values x̄ , Ȳ , Sxx , and Sxy are computed as in the following

table.

Variables Mean Sum of squares

Explanatory x̄ =
1

n

n∑
i=1

xi Sxx =
n∑

i=1

(xi − x̄)2

Response Ȳ =
1

n

n∑
i=1

Yi Sxy =
n∑

i=1

(xi − x̄)(Yi − Ȳ )
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Statistical properties.

By constructing the residual sum of squares (RSS)

RSS =
n∑

i=1

(Yi − β̂0 − β̂1xi )
2 ,

the point estimate σ̂2 of the variance σ2 becomes

σ̂2 =
RSS

n − 2
.

Then the statistics are summarized in the following table.

Coefficient Estimate Standard error t-value

β0 β̂0 = Ȳ − β̂1x̄ S0 = σ̂

√
1

n
+

x̄2

Sxx
T0 =

β̂0

S0

β1 β̂1 =
Sxy
Sxx

S1 =
σ̂√
Sxx

T1 =
β̂1

S1
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Read and declare a data set.

We use the data set of unloading time.

UnloadingTime Temperature

64 52

53 68

58 64

...

To read the data set, we use the read.table.

> TimeData <- read.table("time.txt", header=T)
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Declare and use data set.

We declare the use of data. To see sample statistics with variable names,

we can use the summary(). Then, the first line of the output below

displays the variable names Time and Temperature.

> attach(TimeData)

> summary(TimeData)

Time Temperature

Min. :38.00 Min. :52.00

...

The plot function can be used to show the scatter plot of temperature

against time.

> plot(Temperature, Time, main="Scatter plot of temperature

against time")
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Statistical inference.

To fit the data frame TimeData into a simple linear model, the lm

function will be used and the result must be saved in a variable. Then,

the summary function with the variable produced by the lm function can

display the result.

> TimeLM <- lm(Time ∼ Temperature)

> summary(TimeLM)

...

Coefficients:

Estimate Std.Error t value Pr(>|t|)

(Intercept) 36.1935 16.9515 2.135 0.0585 .

Temperature 0.2659 0.2383 1.116 0.2905

—

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

...
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Statistical inference, continued.

In finding a trend, the result shows that (i) the estimate β̂1 of slope is

0.2659, and (ii) the p-value is 0.2905, which is insignificant. Thus, we

cannot reject the null hypothesis H0 : β1 = 0, and therefore, there is not

sufficient evidence to conclude that the unloading time depends on the

temperature. And we should conclude that no relationship has been

established between the two variables. As for the intercept, the result

shows that (i) the estimate β̂0 of intercept is 36.1935, and (ii) the

p-value is 0.0585, which is moderately significant. To see the fitted line

graphically, we can use the abline function. It adds the fitted line on

the scatter plot which was previously drawn.

> abline(TimeLM)
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Residual analysis.

To assess the fit graphically, we can use the following assortment of plots:

� Residual-Fit spread plot compares the spread of the fitted values

with the spread of the residuals.

� Normal Q-Q plot provides a visual test of the assumption that the

model’s error terms are normally distributed.

We can create these diagnostic plots by using plot function with the

model variable name TimeLM.

> plot(TimeLM, which=1)

> plot(TimeLM, which=2)
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Prediction.

The predict() function is applicable for computation of predicted

values corresponding to the observations of dataset. Assume that we

wish to predict the unloading times respectively for different

temperatures 50, 60, and 70. The predicted values are calculated in the

linear regression model as follows:

new <- data.frame(Temperature=c(50, 60, 70))

new

predict(TimeLM, new, interval="confidence", level=0.95)

First, a new data frame with the new values of the explanatory variables

is constructed. It has three observations for the variable Temperature. It

is important that the variable has the same name as the explanatory

variable in the original dataset. The predict() command asks R to

calculate the predicted values. The level of the confidence intervals may

be changed with the level option.
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Assignment No.8
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Computer Assignment.

Investigate the following statistical studies, and write a short report on

your own statistical analysis. Your report must include:

1. sample statistics such as mean, median, and standard deviation;

2. graphical presentations (histogram, boxplot, or scatter plot) of data;

3. descriptions of hypothesis testing (null and alternative hypothesis);

4. results of formal statistical inference (p-value), and your conclusions.
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Study 1: Red blood cell adhesion.

Data set: bloodcell.txt

Researchers into the genetic disease sickle cell anemia are interested in

how red blood cells adhere to endothelial cells, which form the innermost

lining of blood vessels. A set of 14 blood samples are obtained, and each

sample is split in half. One half of the blood sample is profuse over an

endothelial monolayer of type A and the other half of the blood sample is

profused over an endothelial monolayer of type B. The two types differs

in respect to the stimulation conditions of the endothelial cells. The data

represent the number of adherent red blood cells per mm2. Is there any

evidence that the different stimulation conditions affect the adhesion of

red blood cells?
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Study 2: Service times.

Data sets: afternoon.txt and morning.txt

The data set in afternoon.txt shows the service times (in second) of

customers at a fast-food restaurant who were served between 2:00 and

3:00 on a Saturday afternoon. In addition, morning.txt shows the

service times of customers at the fast-food restaurant who were served

between 9:00 and 10:00 in the morning on the same day. What do these

data sets tell us about the difference between the service times at these

two times of day?

48



Study 3: Aerobic fitness.

Data set: vo2max.txt

The data concern the aerobic fitness of a sample of twenty male subjects

collected at the Health and Performance Sciences Laboratory at Georgia

Tech. An exercising individual breathes through an apparatus that

measures the amount of oxygen in the inhaled air which is used by the

individual. The maximum value per unit time of the utilized oxygen is

then scaled by the person’s body weight to come up with a variable

VO2-max, which is a general indication of the aerobic fitness of the

individual. Fit a linear regression model with VO2-max as the dependent

variable (the response variable) and age as the explanatory variable. Is it

clear that on average aerobic fitness decreases with age?
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