
Lecture note #6 Analysis of Variance

Comparison of three or more groups. The purpose of an analysis is often to compare
different groups of data. Suppose, for example, that a meat scientist wants to examine the effect
of three different storage conditions on the tenderness of meat. For that purpose 24 pieces of
meat have been collected and allocated into three storage (or treatment) groups, each of size
eight. In each group all eight pieces of meat are stored under the same conditions, and after
some time the tenderness of each piece of meat is measured. The main question is whether
the different storage conditions affect the tenderness: are the observed differences between the
groups due to a real effect, or due to random variation? The term “one-way analysis of
variance” (or one-way ANOVA) is used if there are three or more groups.

Example: Dung decomposition. An experiment with dung from heifers was carried out in
order to explore the influence of antibiotics on the decomposition of dung organic material. As
part of the experiment, 36 heifers were divided into six groups. All heifers were fed a standard
feed, and antibiotics of different types (alpha-Cypermethrin, Enrofloxacin, Fenbendazole, Iver-
mectin, Spiramycin) were added to the feed for heifers in five of the groups. No antibiotics were
added for heifers in the remaining group (the control group). For each heifer, a bag of dung was
dug into the soil, and after eight weeks the amount of organic material was measured for each
bag. The primary interest of the antibiotics study was to investigate if there are differences
in the amount of organic material among the antibiotics groups.

The graph at the left is a strip chart of data points with group sample means (solid line segments)
and the total mean of all observations (dashed line). The right is a usual visualization of parallel
boxplots.

The sample means and the sample standard deviations are computed for each group separately.
We can make similar observations as we did in the boxplots. On average the amount of or-
ganic material is lower for the control group than for the antibiotics groups, and except for the
spiramycin group the standard deviations are roughly the same in all groups.
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The amount of organic material appears to be lower for the control group compared to any
of the five types of antibiotics, suggesting that decomposition is generally inhibited by antibi-
otics. However, there is variation from group to group (between-group variation) as well
as a relatively large variation within each group (within-group variation). The within-group
variation seems to be roughly the same for all types, except perhaps for spiramycin, but that
is hard to evaluate because there are fewer observations in that group. Analysis of variance
(ANOVA) will test the equality of group population means by analyzing variances.

Group means and SD’s. Consider the situation with n observations split into k groups. Label
the groups 1 through k. Let g(i) denote the group for observation i. Then g(i) has one of the
values 1, . . . , k. The sample mean ȳj and sample variance s2j in group j are given by

ȳj =

∑
i:g(i)=j yi

nj

s2j =

∑
i:g(i)=j(yi − ȳj)

2

nj − 1
(6.1)

where the sum
∑

i:g(i)=j means the sum over all observations i that belong to group j, and nj is
the size of group j.

Within-group variation. Within-group variation refers to the variation in each of the
groups. It is illustrated by the vertical deviations (residuals) between the observations and their
corresponding group means. The residual sum of squares is given by

SSe =
n∑

i=1

(yi − ȳg(i))
2

It describes the within-group variation since it measures squared deviations between the obser-
vations and the group means. The residual degree of freedom is df = n − k. Thus, residual
variance, also known as residual mean squares (MS), becomes

MSe =
SSe

n− k

Residual variance. The residual mean square MSe is the estimate of common population
variance σ2. It is also called residual variance, and denoted by s2. It can be computed as a
weighted average of the group variance estimates, s2j , as follows

s2 = MSe =

∑k
j=1(nj − 1)s2j

n− k
(6.2)

where n is the total size of data. Note that the group variance s2j is assigned the weight nj − 1,
the denominator in (6.1). The summation of (6.2) becomes the residual sum of squares SSe.

Between-group variation. Between-group variation refers to differences between the
groups; for example, deviation between the different treatments in the antibiotics example.

SSgrp =
k∑

j=1

nj(ȳj − ȳ)2; MSgrp =
SSgrp

k − 1
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As illustrated in the strip chart, it is represented as deviation between the group means ȳj
(horizontal line segments) and the overall mean:

ȳ =

∑n
i=1 yi
n

The group means ȳi’s act as our “observations.” Thus, df = k − 1, and the “average” squared
difference MSgrp per group becomes the mean squares for the factor of interest (between
groups).

ANOVA model. In the one-way layout with k groups, the group means α1, . . . , αk are param-
eters, and we write the one-way ANOVA model

yi = αg(i) + ei, i = 1, . . . , n,

where g(i) = j is the group “j” that corresponds to the measurement yi. The “error” (or
“residual”) terms e1, . . . , en are independent and N(0, σ2)-distributed. In other words, it is
assumed that there is a normal distribution for each group, and that group means αj’s are
different from group to group but all groups share the same standard deviation (namely σ)
representing “within-group variation.” The parameter αj represents the expected value (or the
population average) in the j-th group.

Null hypothesis for ANOVA model. Consider the one-way ANOVA model with group
mean αj in the j-th group. As usual, k denotes the number of groups. In a typical model,
it tests the null hypothesis that µ = µ0. However, in the ANOVA model we are interested in
whether there is any difference between the groups. Thus, the null hypothesis of eqaul means is
given by

H0 : α1 = · · · = αk

and the alternative is the opposite; namely, that at least two α’s are different. Once the signifi-
cant evidence is established, we are often interested in the group differences αj−αl by comparing
the j-th and the l-th group.

Analysis of variance (ANOVA). If there is no difference between any of the groups, then
the group averages ȳj will be of similar size and be similar to the overall mean ȳ. Hence,
MSgrp will be “small.” On the other hand, if groups 1 and 2, say, are different, then the group
averarages will be somewhat different; hence, MSgrp will be “large.” “Small” and “large” should
be measured relative to the within-group variation MSe, and MSgrp is thus standardized with
MSe. Thus, we use

Fobs =
MSgrp

MSe

Large values of Fobs are critical; that is, not in agreement with the assumption (null hypothesis)
that there is no different between the groups.

Analysis of variance Table (ANOVA Table).
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This disagreement is equivalent to Fobs being larger, and the corresponding p-value are often
inserted in an analysis of variance table. The p-value of being smaller than 0.05 indicates
significance evidence toward the disagreement between groups.

The alternative hypothesis is formulated as

HA : αj ̸= αl for some pair (j, l)

If H0 is true then MSgrp will be “small.” On the other hand, if H0 is false then MSgrp will be
“large.” “Small” and “large” should be measured relative to the within-group variation, and
MSgrp is thus standardized with MSe.

Fobs =
MSgrp

MSe

becomes the test statistic and note that large values of Fobs are critical; that is, not in agreement
with the null hypothesis H0.

F-test.

If H0 is true, then Fobs comes from a so-called F-distribution with (k − 1, n − k) degrees of
freedom. In the left the densities for the F -distribution represented by solid, dashed, and dotted
line are respectively shown for three different pairs, (5, 28), (2, 27), and (4, 19), of degrees of
freedom.

Notice that Fk−1,n−k-distribution has a pair of degrees of freedom (not just a single value) and
that the relevant degrees of freedom are the same as those used for computation of MSgrp and
MSe. Since only large values of Fobs are critical, we reject H0 on the 5% significance level if

Fobs ≥ F0.05,k−1,n−k

where F0.05,k−1,n−k denotes the critical value of Fk−1,n−k-distribution. Equivalently the hypoth-
esis is rejected if the p-value

P (F ≥ Fobs)

is 0.05 or smaller. Here F follows Fk−1,n−k-distribution.

Example: Dung decomposition. The values from dung decomposition study are summarized in
the ANOVA table below.
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We obtain Fobs = 7.97 > F0.05,5,28 = 2.56, and conclude that there is strong evidence of group
differences. Equivalently we can observe the p-value less than 0.0001; thus, the result is highly
significant. Subsequently, we need to quantify the conclusion further: Which groups are different
and how large are the differences?

Standard errors in ANOVA model. Recall the one-way ANOVA model

yi = αg(i) + ei, i = 1, . . . , n,

where g(i) denotes the group corresponding to the i-th observation and e1, . . . , en are indepen-
dent and N(0, σ2)-distributed. Then the estimate for the group means α1, . . . , αk are simply the
group averages:

α̂j =

∑
i:g(i)=j yi

nj

and the corresponding standard errors are given by

SE(α̂j) =
s

√
nj

It suggests that mean parameters for groups with many observations (large nj) are estimated
with greater precision than mean parameters with few observations.

Standard errors in contrasts. In the ANOVA setup the residual variance s2 is given by

s2 = MSe =
SSe

n− k
(6.3)

which we call the pooled variance estimate. In the one-way ANOVA case we are very often
interested in the differences or contrasts between group levels rather than the levels themselves.
Hence, we are interested in quantities αj − αl for two groups j and l. Then the estimate is
simply the difference between the two estimates, and the corresponding standard error is given
by

SE(α̂j − α̂l) = s

√
1

nj

+
1

nl

The formulas above are particularly useful for pairwise comparisons.

Pairwise comparisons. Sometimes interest is in particular groups from the experiment, and
we want to compare group “j” and group “l,” say. Still, the analysis is carried out using all data
since this makes the estimate of the standard deviation more precise. In a sense we “borrow
information” from all observations when we estimate the residual variance by s2 in (6.3, even
though we use only the data from the two groups in question to estimate the mean difference.
The 95% confidence interval for αj − αl is calculated as

(α̂j − α̂l)± (t0.025,n−k)s

√
1

nj

+
1

nl
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Here s is the residual standard deviation from (6.3), and the critical value is obtained from
to the tn−k-distribution. Simultaneous calculations of confidence interval for different pairs of
groups should not be done uncritically, though, due to the multiple testing problem.

The null hypothesis becomes
H0 : αj − αl = 0

and by rejecting H0 we consider the two-sided alternative

HA : αj − αl ̸= 0

The difference is significant on the 5% significance level if and only if

|α̂j − α̂l| ≥ (t0.025,n−k)s

√
1

nj

+
1

nl

The right-hand side of this equation is called the margin of error for the difference between group
“j” and group “l.” We can compare differences of two groups, and see if there are significant
differences.

Example: Dung decomposition. Recall that the residual standard deviation is obtained by

s =
√
0.01482 = 0.1217

The margin of error for 95% confidence interval of difference between Control and Spiramycin
is given by

(2.048)(0.1217)

√
1

6
+

1

4
= 0.161

where t0.025,28 = 2.048 is the critical value from t28-distribution. Similarly we can obtain the
margin of error for all other comparisons by

(2.048)(0.1217)

√
1

6
+

1

6
= 0.144

For the Spiramycin group, we find that

α̂spiramycin − α̂control = 0.252 > 0.161,

so the group is significantly different from the control group. On the other hand, there is no
significant difference between the enrofloxacin group and the control group since

α̂enroflox − α̂control = 0.107 < 0.144.

Using the same arguments for the remaining three antibiotic types, we conclude that the amount
of organic material is significantly lower for the control groups than for all other groups, except
the enrofloxacin group.

Example: Dung decomposition. In the one-way ANOVA analysis, we want to test the
hypothesis of an overall effect. The test is reported by the summary from the aov() function:
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model <- aov(org ~ type)

summary(model)

The output contains one line per source of variation, and for each source it lists the degrees of
freedom, the SS-value, and the MS-value. Moreover, the F test for the effect of type is carried
out: the value of F test and the associated p-value are reported. Notice how the degrees of
freedom for the test, here (5, 28), also appear in the output.

We use the antibiotics data for illustration of multiple comparison, and reproduce the table
above. Since the vector “type” contains text values, R automatically uses it as a factor. The
lm() and summary() calls are used as follows:

outcome <- lm(org ~ type)

summary(outcome)

Multiple comparisons. When comparing the mean differences simultaneously a simple com-
parison using t-distribution will inflate the probability of declaring a significant difference when
it is not in fact significant. To compare pairwise differences for multiple pairs of groups, we can
use the TukeyHSD().

TukeyHSD(outcome, conf.level=0.95)

For each pair of groups it provides the difference “diff” in the observed means, the confidence
interval of the lower end point “lwr” and the upper end point “upr”, and “p adj” giving the
p-value after adjustment for the multiple comparisons.
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