
Lecture note #8 Linear Models I

Multiple linear regression. Several continuous explanatory variables, or covariates, can be
measured for each observational unit. If we denote the d covariate measurements for unit i as
xij, j = 1, . . . , k then the multiple linear regression model is defined by

yi = β0 + β1xi1 + · · ·+ βkxik + ei, i = 1, . . . , n,

where the residuals are assumed to be independent and normally distributed with mean 0
and variance σ2. The regression parameters β1, . . . , βk are interpreted as ordinary regression
parameters: a unit change in the variable xj corresponds to an expected change of βj in the
response y if we assume that all other variables remain unchanged.

Example: Volume of cherry trees. It is difficult to measure the volume of a tree without
cutting it down. The tree diameter and height are easy to measure without cutting down
the tree, and the primary purpose of this experiment was to predict the tree volume from the
diameter and height in order to be able to estimate the value of a group of trees without felling.
Thus, the multiple linear regression with two explanatory variables becomes

yi = β0 + β1xi1 + βkxi2 + ei, i = 1, . . . , n,

where ei ∼ N(0, σ2), and yi is the volume, xi1 is the height, and xi2 is the diameter.

We start our initial exploration of the data by producing graphs that show the relationship
between the variables. Scatter plot matrix is used to visualize pairwise comparison of variables.

If we assume that the trunk of a tree can be viewed as a cone with diameter d and height h, we

can use the result from geometry that gives the volume v of a cone as v =
π

12
hd2
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We consider the model
v = chβ1dβ2

with constant c. If the above formula characterizes the volume v better, we may expect β1 ≈ 1
and β2 ≈ 2. Thus, in general we get the following model:

ln yi = β0 + β1 lnxi1 + β2 lnxi2 + ei, i = 1, . . . , n,

The model has the form of a multiple linear regression with log-transformed variables, ln y, lnx1

and ln x2, corresponding to the volumn y, the height x1 and the diameter x2.

Scatter plot matrix is used to visualize pairwise comparison of variables. If we compare these
plots to the matrix plot for the original model, the fit has improved.

Residual plots for cherry tree data (left panel) and log-transformed cherry tree data (right panel).
The variance in log-transformed data is more homogeneous and there is no apparent structure
of the residuals.

Null hypotheses for coefficients. Null hypotheses for the multiple regression model typically
corresponds to no effect or no influence of variable xj on y. The statistical model under the null
hypothesis

H0 : βj = 0

is a multiple linear regression model without the j-th covariate xj, but with the other covariates
remaining in the model. The test therefore examines if the j-th covariate xj contributes to the
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explanation of variation in y when the association between y and other covariates has
been taken into account.

Example: Volume of cherry trees. In the cherry tree example the hypotheses for β1 = 0
and for β2 = 0 have been rejected. The conclusion would be that there is association between
height and volume and between diameter and volume in the log-transformed data.

Based on the summary table we conclude that both the height and the diameter are significant
and therefore that if we want to model the tree volume, we get the best model when we include
information on both diameter and height.

Example: Tensile strength. The data show the tensile strength in pound-force per square
inch of Kraft paper (used in brown paper bags) for various amounts of hardwood contents in
the paper pulp.

When we look at the observed strength as a function of hardwood content, it is clear that the
strength of the paper starts to decline after the hardwood reaches 11% and that we need a model
that is able to capture this change.

Left panel shows paper strength of Kraft paper as a function of hardwood contents in the
pulp with the fitted quadratic function superimposed. Right panel is the residual plot for the
quadratic regression model.

The quadratic regression model is given by

yi = β0 + β1xi + β2x
2
i + ei, i = 1, . . . , n
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This is a special case of the multiple regression model, so we can use the same approach as
earlier. In particular, we can test if a quadratic model fits better than a straight line model if
we test the hypothesis

H0 : β2 = 0.

If we reject the null hypothesis we must conclude that the quadratic model fits the data better
than the simpler straight line model.

The parameter for the quadratic term, β2, is highly significant. This tells us that the quadratic
regression model is significantly better than a simple linear regression model since we reject the
hypothesis H0 : β2 = 0.

Collinearity and multicollinearity. Collinearity is a linear relationship between two ex-
planatory variables and multicollinearity refers to the situation where two or more explanatory
variables are highly correlated. For example, two covariates (e.g., height and weight) may mea-
sure different aspects of the same thing (e.g., size). Multicollinearity may give rise to spurious
results. For example, you may find estimates with the opposite sign compared to what you
would expect, unrealistically high standard errors, and insignificant effects of covariates
that you would expect to be significant. The problem is that it is hard to distinguish the
effect of one of the covariates from the others. The model fits more or less equally well
no matter if the effect is measured through one or the other variable.

Example: Congenital heart defect study. Heart catheterization is sometimes performed
on children with congenital heart defects. A Teflon tube (catheter) 3mm in diameter is passed
into a major vein or artery at the femoral region and pushed up into the heart to obtain
information about the heart’s physiology and functional ability. The length of the catheter is
typically determined by a physician’s educated guess. In a small study involving 12 children,
the exact catheter length required was determined by using a fluoroscope to check that the
tip of the catheter had reached the pulmonary artery (Weindling, 1977). The patients’ heights
and weights were recorded. The objective was to see how accurately catheter length could be
determined by these two variables.
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The scatterplots of all pairs of variables provide a useful visual presentation of their relationships.
We will refer to these plots as we proceed through the analysis.

We first consider predicting the length by height alone and by weight alone. The results of
simple linear regressions are tabulated below.

Simple Regression with Height
Parameter Estimate SE t p-value
β0 12.1240 4.2472 2.855 0.017114
β1 0.5968 0.1013 5.894 0.000152

Simple Regression with Weight
Parameter Estimate SE t p-value
β0 25.63746 2.00421 12.792 1.60×10−7

β1 0.27727 0.04399 6.303 8.87×10−5

It tests the null hypothesis
H0 : β1 = 0

for the simple linear regression
yi = β0 + β1xi + ei

These null hypotheses are of no real interest in this problem, but we show the tests for pedagog-
ical purposes. Clearly, null hypothesis would be rejected in these cases. The predictions from
both models are similar, and the correlation coefficients are 0.881 and 0.894, respectively.

We next consider the multiple regression

yi = β0 + β1xi1 + β2xi2 + ei

of length on height xi1 and weight xi2 together, since perhaps better predictions may be obtained
by using both variables rather than either one alone. The method of least squares produces the
following table.

Parameter Estimate SE t p-value
β0 21.0084 8.7512 2.401 0.0399
β1 0.1964 0.3606 0.545 0.5993
β2 0.1908 0.1652 1.155 0.2777
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Applying t-tests would not lead to rejection of either of the hypotheses

H1 : β1 = 0 or H2 : β2 = 0

Yet in the simple linear regressions carried out above, the coefficient β1 was highly significant. A
partial explanation of this is that the coefficient β1 in the simple regressions and the coefficient
β1 in the multiple regression have different interpretations. In the multiple regression, β1 is the
change in the expected value of the catheter length if height is increased by one unit and weight
is held constant. It is the slope of the height that describes the relation of length to height and
weight; the large standard error indicates that this slope is not well resolved.

To see why, consider the scatterplot of height versus weight. The method of least squares fits
a multiple linear regression to the catheter length values that correspond to the pairs of height
and weight values. It should be intuitively clear from the figure that the slope of the fitted
linear model is relatively well resolved along the line about which the data points fall but poorly
resolved along lines on which either height or weight is constant. Variables that are strongly
linearly related, such as height and weight in this example, are said to be highly collinear.
The plot of height versus weight should serve as a caution concerning making predictions from
such a study.
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