
Lecture note #9 Linear Models II

One-way ANOVA model. In the one-way ANOVA setup with k groups, the group means
α1, . . . , αk are parameters, and we write the one-way ANOVA model

yi = αg(i) + ei, i = 1, . . . , n,

where g(i) = xi is a “categorical” explanatory variable that corresponds to a “numerical” vari-
able yi. The remainder terms e1, . . . , en are independent and N(0, σ2)-distributed. In other
words, it is assumed that there is a normal distribution for each group, with means that are
different from group to group and given by the α’s but with the same standard deviation
in all groups (namely, σ) representing the within-group variation. The parameters of the
model are α1, . . . , αk and σ, where αj is the expected value (or the population average) in the
j-th group.

Example: Dung decomposition. An experiment with dung from heifers was carried out in
order to explore the influence of antibiotics on the decomposition of dung organic material. As
part of the experiment, n = 34 heifers were divided into six groups. No antibiotics were added
for heifers in the first group (the control group with j = 1), and antibiotics of different types
(alpha-Cypermethrin, Enrofloxacin, Fenbendazole, Ivermectin, Spiramycin) were added to the
feed for heifers in the remaining five groups labeled j = 2, . . . , 6. For each heifer, a bag of dung
was dug into the soil, and after eight weeks the amount of organic material was measured for
each bag.

The residual analysis is illustrated below: Residual plot (left) and QQ-plot (right) of the stan-
dardized residuals. The straight line has intercept zero and slope one. There are only six possible
predicted values (one for each group), and the variation of the standardized residuals seems to
be roughly the same for all groups.

Strip chart of the antibiotics data is obtained in the left below: Data points with group sample
means (solid line segments) and the total mean of all observations (dashed line) in the left.
Parallel boxplots are presented in the right below.
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The observations together with group means (solid lines) and the total mean (dashed line)
are shown in the strip chart. The amount of organic material appears to be lower for the
control group compared to any of the five types of antibiotics, suggesting that decomposition is
generally inhibited by antibiotics. However, there is variation from group to group (between-
group variation) as well as a relatively large variation within each group (within-group variation).
The within-group variation seems to be roughly the same for all types, except perhaps for
spiramycin, but that is hard to evaluate because there are fewer observations in that group.

Group means and SD’s. Consider the situation with n observations split into k groups. Label
the groups j = 1 through j = k. Let g(i) denote the group for observation i. Then g(i) has one
of the values 1, . . . , k. The sample mean ȳj and sample standard deviation sj in j-th group are
given by

ȳj =

∑
i:g(i)=j yi

nj

sj =

√∑
i:g(i)=j(yi − ȳj)

2

nj − 1

where nj is the size of j-th group and the summation is over all observations i’s in j-th group.
The sample mean ȳj becomes the estimate α̂j.

Example: Dung decomposition. The sample means and the sample standard deviations are
computed for each group separately. We find the same indications as we did in the boxplots.
On average the amount of organic material is lower for the control group than for the antibiotics
groups, and except for the spiramycin group the standard deviations are roughly the same in
all groups.

Standard error in one-way ANOVA. In the ANOVA setup the residual variance s2 is given
by

s2 =

∑n
i=1(yi − ȳg(i))

2

n− k

which we call the pooled variance estimate. In the one-way ANOVA case we are very often
interested in the differences or contrasts between group levels rather than the levels them-
selves. Hence, we are interested in quantities αj−αl for two groups j and l. Then the estimate is
simply the difference between the two estimates, and the corresponding standard error is given
by

SE(α̂j − α̂l) = s

√
1

nj

+
1

nl

The formulas above are particularly useful for two samples (k = 2).
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Consider the one-way ANOVA model

yi = αg(i) + ei, i = 1, . . . , n,

where g(i) denotes the group corresponding to the i-th observation and e1, . . . , en are indepen-
dent and N(0, σ2)-distributed. Then the estimates α̂1, . . . , α̂k for the group mean are simply the
group averages ȳ1, . . . , ȳk, and the corresponding standard errors are given by

SE(α̂j) = s

√
1

nj

It suggests that mean parameters for groups with many observations (large nj) are estimated
with greater precision than mean parameters with few observations.

Between-group variation. Between-group variation refers to differences between the
groups, and it is calculated by

SSgrp =
k∑

j=1

nj(ȳj − ȳ)2; MSgrp =
SSgrp

k − 1

As illustrated in the strip chart for the antibiotics example, variation between the different
treatments is represented as deviation between the group means ȳj (horizontal line segments)
and the overall mean (dashed line):

ȳ =

∑n
i=1 yi
n

When we examine the between-group variation, the k group means essentially act as our obser-
vations. The mean squared difference MSgrp per group becomes the between-group variation.

Hypothesis test. Consider the comparison of groups

yi = αg(i) + ei, i = 1, . . . , n,

where g(i) is the group that observation i belongs to and e1, . . . , en are residuals. As usual, k
denotes the number of groups. In a typical linear model, it tests the null hypothesis that αj = 0.
However, in this study we are interested in whether there is no difference between the groups.
Thus, the null hypothesis is given by

H0 : α1 = · · · = αk

and the alternative hypothesis is the opposite; namely, that at least two α’s are different.

HA : αj ̸= αl for some pair {j, l}.

F-test. If there is no difference between any of the groups (H0 is true), then the group averages
will be of similar size and be similar to the total mean . Hence, MSgrp will be small. On
the other hand, if groups 1 and 2, say, are different (H0 is false), then the group means will be
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somewhat different and cannot be similar; thus, MSgrp will be large. “Small” and “large” should
be measured relative to the within-group variation. We use the test statistic

Fobs =
MSgrp

MSe

where MSgrp is standardized with the residual variance MSe = s2. Note that large values of Fobs

are critical; that is, not in agreement with the null hypothesis.

If the null hypothesis is true, then Fobs comes from a so-called F-distribution with (k− 1, n− k)
degrees of freedom. Notice that there is a pair of degrees of freedom (not just a single value) and
that the relevant degrees of freedom are the same as those used for computation of MSgrp and
MSe. The density for the F distribution is shown for three different pairs of degrees of freedom
in the left panel below.

Mechanism of rejection. This disagreement is equivalent to Fobs being larger, and the corre-
sponding p-value are often inserted in an analysis of variance table. The p-value of being smaller
than 0.05 indicates significance evidence toward the disagreement between groups. Since only
large values of Fobs are critical, we calculate the p-value by

P (F ≥ Fobs)

where F follows the F -distribution with (k − 1, n − k) degrees of freedom. The hypothesis is
rejected if the p-value is 0.05 or smaller (if α = 0.05 is the significance level). In particular, H0

is rejected on the 5% significance level if Fobs ≥ F0.05,k−1,n−k.

Analysis of variance. Within-group variation refers to the variation in each of the groups:

SSe =
n∑

i=1

(yi − ȳg(i))
2; MSe =

SSe

n− k
= s2

which we call the mean square error. A large between-group variation is an indication of
differences between the groups, but if the within-group variation is also large, then the differences
may be due to random variation. It is the distinction between different sources of variation that
has given analysis of variance (ANOVA) its name.
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ANOVA is associated with the estimation of “variation” within and between groups in order to
analyze the differences among means. Ronald Fisher introduced the term variance and proposed
its formal analysis in his article in 1918. It provides a procedure of F-test to find whether two or
more population means are equal (null hypothesis), and therefore generalizes the t-test beyond
two means. Under the null hypothesis the test statistic F has an F-distribution which was
named after Fisher.

Example: Dung decomposition. The values are listed in an ANOVA table as follows:

The F value of 7.97 is very extreme, corresponding to the very small p-value less than 0.0001.
Thus, we reject the hypothesis and conclude that there is strong evidence of group differences.
Subsequently, we need to quantify the conclusion further. Which groups are different and how
large are the differences?

Pairwise comparisons. Sometimes interest is in particular groups from the experiment, and
we want to compare j-th group and l-th group, say. Still, the analysis is carried out using all
data since this makes the estimate of the standard deviation more precise. In a sense we borrow
information from all observations when we estimate the standard deviation, even though we
use only the data from the two groups in question to estimate the mean difference. The null
hypothesis is

H0 : αj = αl (or, equivalently H0 : αj − αl = 0)

and we consider the two-sided alternative hypothesis

HA : αj ̸= αl (or, equivalently HA : αj − αl ̸= 0)

In the ANOVA setup the residual variance s2 is given by

s2 =

∑n
i=1(yi − ȳg(i))

2

n− k

which we call the pooled variance estimate. In the one-way ANOVA case we are very often
interested in the differences or contrasts between group levels. Hence, we are interested in
quantities αj − αl for two groups j and l. Then the estimate is simply the difference between
the two estimates, and the corresponding standard error is given by

SE(α̂j − α̂l) = s

√
1

nj

+
1

nl

The formulas above are particularly useful for two samples (k = 2).

The difference is significant on the significance level α if and only if

|α̂j − α̂l|
SE(α̂j − α̂l)

≥ tα/2,n−k
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Here the critical value is obtained from to the t-distribution with n− k degree of freedom. The
value

(tα/2,n−k)SE(α̂j − α̂l) (9.1)

is called the margin of error for (1−α)% confidence interval of difference between j-th group
and l-th group. Hence, we can see significant difference if the magnitude |α̂j − α̂l| of difference
is larger than the margin (9.1) of error. This should not be done uncritically, though, due to
the multiple testing problem.

Example: Dung decomposition. Recall that the residual standard deviation is obtained by

s =
√
0.01482 = 0.1217

The margin of error for 95% confidence interval of difference between Control and Spiramycin
is given by

(2.048)(0.1217)

√
1

6
+

1

4
= 0.161

whereas the margin of error for all other comparisons becomes

(2.048)(0.1217)

√
1

6
+

1

6
= 0.144

For the Spiramycin group, we find that

α̂spiramycin − α̂control = 0.252 > 0.161,

so the group is significantly different from the control group. On the other hand, there is no
significant difference between the enrofloxacin group and the control group since

α̂enroflox − α̂control = 0.107 < 0.144.

Using the same arguments for the remaining three antibiotic types, we conclude that the amount
of organic material is significantly lower for the control groups than for all other groups, except
the enrofloxacin group.

R coding: Dung decomposition. In the one-way ANOVA analysis, we want to test the
hypothesis of an overall effect. The test is reported by the summary from the aov() function:

Model <- aov(org ~ type)

summary(Model)

The output contains one line per source of variation, and for each source it lists the degrees of
freedom, the SS-value, and the MS-value. Moreover, the F-test for the effect of type is carried
out: the value of F-test and the associated p-value are reported. Notice how the degrees of
freedom for the test, here (5, 28), also appear in the output.

We use the antibiotics data for illustration of multiple comparison, and reproduce the following
table.
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Since the variable type contains text values, R automatically uses it as a factor. The lm() and
summary() calls are used as follows:

summary(lm(org ~ type - 1))

summary(lm(org ~ type))

Example: Parasite counts for salmons. An experiment with two difference salmon stocks,
from River Conon in Scotland and from River Atran in Sweden, was carried out as follows.
Thirteen fish from each stock were infected and after four weeks the number of a certain type
of parasites was counted.

The statistical model for the salmon data is given by

yi = αg(i) + ei, i = 1, . . . , 26

where g(i) is either 1=“Atran” or 2=“Conon” and e1, . . . , e26 are from N(0, σ2). In other words,
Atran observations are from N(α1, σ

2), and Conon observations are from N(α2, σ
2).

Parallel boxplots for the two samples are shown above, and the sample mean and sample stan-
dard deviations are obtained for each group separately.

ȳ1 = 32.23, s1 = 7.28

ȳ2 = 21.54, s2 = 5.81.
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We can compute the pooled variance estimate by

s2 =
(12)s21 + (12)s22

24
= 43.40

The difference in parasite counts is estimated by

α̂1 − α̂2 = 32.23− 21.54 = 10.69

with a standard error of

SE(α̂1 − α̂2) = s

√
1

13
+

1

13
= 2.58

The 95% confidence interval for the difference is given by

10.69± (t0.025,24)(2.58) = (5.36, 16.02)

We see that the data is not in accordance with a difference of zero between the stock means.
Thus, the data suggests that Atran salmons are more susceptible than Conon salmons to para-
sites.

Additive two-way analysis of variance. We can think of a feeding experiment to examine
the average weight of some animal and we have a reference feeding strategy and two substances
we can add to the food. We denote the average weight for the reference group by µ and the
average increase in weight for substances 1 and 2 by α and β, respectively. Then we can
summarize the average values for the groups by different feeding strategies.

The two-way analysis of variance (also called the additive two-way analysis of variance model)
uses two categorical explanatory variables. Let g(i) and h(i) denote the functions that define the
groups of the two categorical variables for i-th observation, and consider the two-way additive
model

yi = αg(i) + βh(i) + ei, i = 1, . . . , n

The model extends the one-way analysis of variance in the same way that the simple linear
regression model extends to multiple linear regression.

Example: Cucumber disease. This study examines how the spread of a disease in cucumbers
depends on climate and amount of fertilizer. Two different climates were used: (A) change to
day temperature 3 hours before sunrise and (B) normal change to day temperature. Fertilizer
was applied in 3 different doses: 2.0, 3.5, and 4.0 units. The amount of infection on standardized
plants was recorded after a number of days, and two plants were examined for each combination
of climate and dose.
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Here we have 2 categorical variables: climate (with 2 possible categories) and dose (with 3
possible categories). One way to think about the design of a two-way analysis of variance model
is that we can place each of our observations in exactly one cell of the two-way table. Hypothesis
tests are analogous to their one-way analysis of variance counterparts. Null hypotheses state that
there is no difference among the levels of the first and second explanatory variables, respectively.

The two hypotheses of interest for the cucumber data are:

H0 : αA = αB

and
H0 : β2.0 = β3.5 = β4.0

The alternative hypotheses are that at least two α’s are unequal or that at least two of the β’s
are different, respectively. A consequence of the two-way additive model is that the contrast
between any two levels for one of the explanatory variables is the same for every category.

Example: Pork color over time. The investigators seek to examine if there is a systematic
change in the brightness from a tristimulus color measurement. The color was measured from a
pork chop from each of ten pigs at days 1, 4, and 6 after storage. We write the model as

yi = αg(i) + βh(i) + ei, i = 1, . . . , n

The function g(i) defines which pig (levels 1, . . . , 10) each of the 30 observations corresponds to,
while h(i) is the similar function for days. We include pig as an explanatory variable because we
suspect that meat brightness might depend on which specific pig the pork was cut from. There
could be an effect of pig, and we seek to account for that by including pig in the model even
though we are not particularly interested in being able to compare any pair of pigs like, say, pig
2 and pig 7.

The primary hypothesis of interest is

H0 : β1 = β4 = β6

which corresponds to no change in brightness over time. Excluding the explanatory variable
pig from the analysis might blur the effects of day since the variation among pigs may be much
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larger than the variation between days. This is called a block experiment with pigs as “blocks.”
Sometimes observational units are grouped in such blocks and the observational units within
a block are expected to be more similar than observations from different blocks. We expect
observations taken on the same pig to be potentially more similar than observations taken on
different pigs.

Left panel shows interaction plot of the change in meat brightness for 10 pigs measured at days
1, 4, and 6 after storage. Right panel shows the residual plot for the two-way analysis of variance
of the pork data.

We can conclude that there is a borderline significant effect of days. The test for pigs can
also be seen in the analysis of variance table, and while this may be of little interest for the
manufacturers producing pork, since that is nothing they can control, we can still see that it is
highly significant.

The p-value from ANOVA table only tells us that not all days have the same level. The contrasts
give us more information about the different days. From the contrasts we see that the difference
in days primarily stems from a difference between days 1 and 6. We can also see that the
brightness scores decrease as time increases since the contrasts are all positive. The average
difference in brightness between days 1 and 6 is 2.43.
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