
Lecture note #4 Linear Regression

Simple linear regression model. Simple linear regression attempts to model the rela-
tionship between two quantitative variables, x and y, by fitting a linear equation to the observed
data.

y = α + βx (4.1)

where α (also called the intercept) is the value of y when x = 0 and β is the slope (i.e., the
change in y for each unit change in x). When we want to model the relationship between two
variables we assume that one variable is the dependent variable (y in the linear equation
(4.1)) while the other is an explanatory variable x in (4.1).

We want to model y as a linear function of x in the hope that information about x will give
us some information about the value of y. Therefore, it will “explain” the value of y, at least
partly by the value of x.

Example: Stearic acid and digestibility. Researchers examined the digestibility of fat with
different levels of stearic acid. The average digestibility percent was measured for nine different
levels of stearic acid proportion. Data are shown in the table below, where x represents stearic
acid and y is digestibility measured in percent.

The scatter plot can be obtained together with the straight line defined by

y = 96.5334− 0.9337x

It will become clear why these values are used for the parameters in the model.
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It shows that the relationship between stearic acid and digestibility appears to scatter around
a straight line and that the line plotted in the figure seems to capture the general trend of the
data.

Estimates for a regression line.

� Fitting a regression line means identifying the “best” line; i.e., the optimal parameters to
describe the observed data.

� Let (xi, yi), i = 1, . . . , n, denote our n pairs of observations and assume that we somehow
“guess” the two parameters, α and β, from a linear equation.

y = α̂ + β̂x

� They are used to model the relationship between the x’s and the y’s. Notice how we placed
“hats” over α and β to indicate that the values are not necessarily the true (but unknown)
values of α and β but estimates.

Residuals in a regression line.

� For any x, we can use this model to predict the corresponding y-value. In particular, we
can do so for each of our original observations, x1, . . . , xn, to find the predicted values

ŷi = α̂ + β̂xi

� We can use these predicted values to evaluate how well the model fits to the actual observed
values. This is achieved by looking at the residuals, which are defined as follows:

ri = yi − ŷi

� The residuals measure how far away each of our actual observations (yi’s) are from the
expected value given a specific model (the straight line in this case).

Example: Stearic acid and digestibility. Let us for now assume that we have eyeballed the
data and have found that a line defined by the parameters

α̂ = 96.5334 β̂ = −0.9337

We can then calculate the predicted value for each observed x; e.g., for x1 = 29.8 by

ŷ1 = 96.5334− (0.9337)(29.8) = 68.709

This value is slightly higher than the observed value of 67.5, and the residual for the first
observation is

r1 = 67.5− 68.709 = −1.209
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The figure above shows a graphical representation of the residuals for all nine levels of stearic
acid. The vertical lines between the model (the straight line) and the observations are the
residuals.

Least squares estimation. The least squares method estimates the unknown parameters of a
model by minimizing the sum of the squared deviations between the data and the model. Thus
for a linear regression model we seek to identify the parameters α and β such that

n∑
i=1

(yi − α− βxi)
2

becomes as small as possible. The line that best fits the data has slope and intercept given by

β̂ =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2

α̂ =ȳ − β̂x̄

where x̄ =
∑n

i=1 xi/n and ȳ =
∑n

i=1 yi/n denote the mean values.

The figure above visualizes squared residuals for the dataset on digestibility and stearic acid.
Gray areas represent the squared residuals for the proposed regression line.

Example: Stearic acid and digestibility. The mean values of x and y are

x̄ =
131.3

9
= 14.5888 ȳ =

746.2

9
= 82.9111
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Once we have x̄ and ȳ we can obtain (xi − x̄)2 and (xi − x̄)(yi − ȳ) and finally calculate the
estimated slope and intercept:

β̂ =
−960.40

1028.549
= −0.9337

α̂ = 82.9111− (−0.9337)(14.5888) = 96.5334

The regression line allows us to provide statements about the change in digestibility: “If we
increase the stearic acid level by 10 percentage points we expect the digestibility to decrease by
9.33 percentage points.”

When is linear regression appropriate?

� Paired Quantitative variables. Linear regression applies only to a pair (x, y) of two
quantitative variables. Both variables are quantitative before a linear regression is used to
model the relationship between x and y.

� Does the relationship appear to be linear? Is it reasonable to model the relationship
between x and y as a straight line? We should always start our analysis by plotting
the data and checking the overall relationship between x and y in a graph: a curvilinear
relationship between x and y makes a linear regression inappropriate.

� Influential points. Influential points are data points with extreme values that greatly
affect the slope of the regression line. Influential points are often outliers in the y-direction.

Example of an influential point. The scatter plot located to the left shows the regression
line. If we include this additional pair of data: (x, y) = (2.00, –20.00), the corresponding plot is
located to the right.

An additional point would be an influential point because the graph of the regression line would
change considerably, as shown by the regression line located to the right.

The correlation coefficient. The sample correlation coefficient describes the linear asso-
ciation between x and y and is defined as

ρ̂ =

∑n
i=1(xi − x̄)(yi − ȳ)√

(
∑n

i=1(xi − x̄)2)(
∑n

i=1(yi − ȳ)2)
(4.2)

The sign of the correlation coefficient is identical to the sign of the regression slope. Another
point worth noting is that x and y enter (4.2) symmetrically, so the correlation of x and y is
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identical to the correlation between y and x. The correlation is a measure of the strength of
the linear relationship between the two variables and it can be shown that it is always between
−1 and 1. In some situations we may expect an association between x and y but it may not be
reasonable to say that x is the cause of y or vice versa.

The graphs above show correlation coefficients for different datasets. The second row of graphs
illustrates that the slope estimate β̂ has no influence on the correlation coefficient ρ̂. The last
row of graphs suggests that the correlation may be zero even though the data are structured.

� The correlation coefficient of unity occurs when the observations lie exactly on a straight
line with some positive or some negative slope, and the value of negative one corresponds
to the situation where the observations are exactly on a straight line with negative slope.

� The correlation coefficient is zero when the best-fitting straight line of y on x does not
depend on the observed value of the x’s.

� It is vital to remember that a correlation, even a very strong one, does not mean we
can make any conclusion about causation. Moreover, there may be a strong non-linear
relationship between x and y even though the correlation coefficient is zero.

When is correlation coefficient relevant?

� Quantitative variables. The sample correlation coefficient applies only to two quantita-
tive variables in pairs. Make sure that both variables are quantitative before the correlation
coefficient between x and y is calculated.

� Visualize linear association by a scatter plot. It is important to plot the data before
the correlation coefficient is calculated—the association may be highly structured, but if
the relationship is non-linear the correlation coefficient may still be zero.

Example: Stearic acid and digestibility. The data file “stearicacid.txt” examined the
digestibility of fat with different levels of stearic acid. The average digestibility percent was
measured for nine different levels of stearic acid proportion. To read this type of data set, we
need to use the following command:

Data <- read.table(file.choose(), header=T)
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Once it is read, we have to attach the data frame “Data” and find the names of variable with
summary statistics:

attach(Data)

summary(Data)

In the call to lm() we specify the statistical model “digest ~ stearic.acid” which can be
interpreted in the following way: The response “digest” is modeled as a linear function of the
explanatory variable “stearic.acid.” By default, R interprets numerical vectors, which is one
of the requirements for a linear regression model.

model <- lm(digest ~ stearic.acid)

model

The output from lm() shows the estimated parameters from the model. The estimated intercept
is found under Intercept to be 96.5334 and the slope, −0.9337, is listed under “stearic.acid.”

In R, the correlation between two quantitative variables is calculated with the cor() function.

cor(digest, stearic.acid)

The correlation is a measure of the strength of the linear relationship between the two variables
and it can be shown that it is always between −1 and 1. The value −0.9672452 corresponds to
the situation where the observations should be very close to a straight line with negative slope.

Linear regression model. The linear regression has two parameters, α and β, which determine
the model

yi = α + βxi + ei, i = 1, . . . , n,

where e1, . . . , en are independent and N(0, σ2)-distributed. Or, equivalently, the model assumes
that y1, . . . , yn are independent. The parameters of the model are α, β, and σ. The slope
parameter β is the expected increment in y as x increases by one unit, whereas α is the expected
value of y when x = 0. The remainder terms e1, . . . , en represent the vertical deviations from
the straight line. The assumption of variance homogeneity means that the typical size of these
deviations is the same across all values of x.

Standard errors for linear regression. In the linear regression model, the estimate of
parameters are given by

β̂ =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
, α̂ = ȳ − β̂x̄

In order to simplify the above formula we can define

SSx =
n∑

i=1

(xi − x̄)2

as the denominator. The standard errors are given by

SE(β̂) =
s√
SSx

, SE(α̂) = s

√
1

n
+

x̄2

SSx
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where the estimate s is obtained from the mean square error

s2 = MSe =

∑n
i=1(yi − α̂− β̂xi)

2

n− 2

Example: Stearic acid and digestibility. Consider the linear regression model which de-
scribes the association between the level of stearic acid and digestibility.

β̂ = −0.9337 α̂ = 96.5334

The denominator value SSx = 1028.549 in the definition for β̂ and the mean square error
MSe = 8.8234 are used to calculate

s =
√
8.8234 = 2.970, SE(β̂) =

2.970√
1028.549

= 0.0926

SE(α̂) = (2.970)

√
1

9
+

(14.5889)2

1028.549
= 1.6752

Example: Stearic acid and digestibility. We need to use a critical value tα/2,n−2 from the
t-distribution with n − 2 degrees of freedom, and obtain (1 − α)% confidence interval for the
slope parameter β by

β̂ ± (tα/2,n−2)SE(β̂)

There are n = 9 observations and two parameters. Since t0.05,7 = 1.895 and t0.025,7 = 2.365, we
compute the 90% and the 95% confidence interval

− 0.9337± (1.895)(0.0926) = (−1.11,−0.76)

− 0.9337± (2.365)(0.0926) = (−1.15,−0.71)

Hence, decrements between 0.76 and 1.11 percentage points of the digestibility per unit incre-
ment of stearic acid level are in agreement with the data on the 90% confidence level.

Standard error for the predicted value. In regression analysis we often seek to estimate
the prediction for a particular value of x. Let x0 be such an x-value of interest. The predicted
value of the response is denoted y0; that is, y0 = α + βx0. It is estimated by

ŷ0 = α̂ + β̂x0

The predicted value has the standard error

SE(ŷ0) = s

√
1

n
+

(x0 − x̄)2

SSx

The (1− α)% confidence interval for the predicted value y0 is given by

ŷ0 ± (tα/2,n−2)SE(ŷ0)
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Example: Stearic acid and digestibility. If we consider a stearic acid level of x0 = 20%
then we will expect a digestibility percentage of

ŷ0 = 96.5334− (0.9337)(20) = 77.859

which has standard error

SE(ŷ0) = (2.970)

√
1

9
+

(20− 14.5889)2

1028.549
= 1.1096

The 95% confidence interval for y0 is given by

77.859± (2.365)(1.1096) = (75.235, 80.483)

In conclusion, the predicted values of digestibility percentage corresponding to a stearic acid
level of 20% between 75.2 and 80.5 are in accordance with the data on the 95% confidence level.

In the figure above we calculated the confidence interval for the expected digestibility percentage
for other values of the stearic acid level. The lower and upper limits are shown in the dotted
lines. The width of the confidence band is smallest close to x̄ and becomes larger as x0 moves
away from x̄.

When is it appropriate to predict?

� x on y or y on x? The regression of x on y is different from the regression of y on x,
and we have to fit a new model with digestibility as the explanatory variable and stearic
acid as the response variable if we wish to predict stearic acid levels from digestibility. In
some experiments it is clear which of the variables should take the role of the response
variable, y, and which variable should take the role of the explanatory variable.

� Interpolation is making a prediction within the range of observed values for the explana-
tory variable x. It enables us to predict values of y for values of x that do not exist in the
sample.

� Extrapolation concerns the situations where predictions are made outside the range
of values used to estimate the model parameters. The prediction becomes increasingly
uncertain when the distance to the observed range of values is increased as there is no way
to check that the relationship continues to be linear outside the observation range.
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Hypothesis test in regression model. Recall the linear regression model for the digestibility
data

yi = α + βxi + ei, i = 1, . . . , n,

where e1, . . . , en are residuals. The null hypothesis

H0 : β = 0

means that there is no relationship between the level of stearic acid and digestibility. It is tested
by the test statistic

Tobs =
β̂ − 0

SE(β̂)
=

−0.9337− 0

0.0926
= −10.08

where the estimate −0.9337 and its standard error 0.0926 are obtained from the data. The value
of Tobs should be compared to the t7-distribution.

For the alternative hypothesis “HA : β ̸= 0” we get

p-value = P (|T | ≥ 10.08) = 0.00002

and we conclude that there is strong evidence of an association between digestibility and the
stearic acid level. That is, the slope is significantly different from zero. Since the estimate
−0.9337 of slope is negative, we conclude that the digestibility percentage decreases as the
percentage of stearic acid increases. When we fail to reject H0 we should take the following
consequences into consideration:

� The hypothesis test for the slope coefficient β is used to validate the linear regression
model by rejecting the null hypothesis.

� If the linear regression is not validated then the best predicted value ŷ is simply the mean
ȳ of the yi’s

Example: Stearic acid and digestibility. Let us first study the output corresponding to a
linear regression model and run an analysis of the digestibility data. First the linear regression
model is fitted and stored in the object model.

model <- lm(digest ~ stearic.acid)

summary(model)

The most important part of the output from summary() is the coefficients part (roughly in the
middle). Four values are listed for each parameter: (i) The estimate; (ii) the standard error
for the estimate; (iii) a t-test statistic for the hypothesis that the corresponding parameter is
equal to zero; and (iv) the corresponding p-value. After the coefficients part we find the residual
standard error, the residual degrees of freedom, and a few things that are not of interest at the
moment.

By using the estimates and standard errors we can compute confidence intervals. Here we can
make R do the computations for us and use the confint() function.

confint(model, level=0.90) # 90% confidence intervals

confint(model) # Default is 95%
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The output has one line per parameter, with the same names as in the output from summary().
Notice how we may specify the level of the confidence interval and that the 95% interval is
computed if no level is specified.

The predict() function is applicable for computation of predicted values corresponding to the
observations in a dataset. Consider the digestibility data and assume that we wish to predict the
digestibility percent for levels 10, 20, and 25 of stearic acid. The predicted values are calculated
in the linear regression model as follows:

new <- data.frame(stearic.acid=c(10, 20, 25))

new

predict(model, new, interval="confidence", level=0.95)

First, a new data frame with the new values of the explanatory variables is constructed. It
has three observations for the variable stearic.acid. It is important that the variable has the
same name as the explanatory variable in the original dataset. The predict() command asks
R to calculate the predicted values. The level of the confidence intervals may be changed with
the level option.

Example: Song of Insects. ChirpsData contains the numbers of chirps in one minute and
the corresponding temperatures in Fahrenheit.

ChirpsData <- read.csv(file.choose(), header=T)

ChirpsData

attach(ChirpsData)

The correlation between two quantitative variables is calculated with the cor() function.

cor(Temp, Chirps)

Here the numbers of chirps in one minutes is used to predict temperatures outside. By default,
R interprets numerical vectors—in our case, both Chirps and Temp—as quantitative variables,
which is one of the requirements for a linear regression model.

outcome <- lm(Temp ~ Chirps)

summary(outcome)

The variable “outcome” contains everything we need to know about the model. Here we have
two parameters: the intercept and the slope. The estimated intercept is found at the intercept
and the slope is listed at Chirps. The respective p-values test the null hypothesis “H0 : α =
0” (intercept) or “H0 : β = 0” (slope). By rejecting H0 for the slope parameter β we find
evidence of linear relationship between two quantitative variables, the numbers of chirps and
the temperatures.

We use a simple scatter plot to illustrate the relationship between two quantitative variables.
The plot() function is used to produce a scatter plot, and we can add additional information
to the plot by specifying the labels for the x-axis and the y-axis with the xlab and ylab options
to plot().

plot(Chirps, Temp, xlab="Chirps per Minute", ylab="Temperature")

The abline() function adds a straight line to an existing plot, and we can use abline() to
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illustrate the estimated linear relationship between the two variables.

abline(outcome, col="red")
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