
Lecture note #7 Model Validation

Simple linear regression model. The linear regression has two parameters, β0 and β1, which
determine the model

yi = β0 + β1xi + ei, i = 1, . . . , n,

where e1, . . . , en are independent and N(0, σ2)-distributed. Or, equivalently, the model assumes
that y1, . . . , yn are independent. The parameters of the model are β0, β1, and σ. The slope
parameter β1 is the expected increment in y as x increases by one unit, whereas β0 is the expected
value of y when x = 0. The remainder terms e1, . . . , en represent the vertical deviations from
the straight line. The assumption of variance homogeneity means that the typical size of these
deviations is the same across all values of x.

Residual standard error. In a linear model the residual

ri = yi − β̂0 − β̂1xi, i = 1, . . . , n,

measures the distance from the observed value yi to the predicted value ŷi = β̂0 + β̂1xi. The
residual standard error σ̂ is estimated by the average distance from the observations to the
predicted. Thus, we can calculate it by

σ̂ =

√∑n
i=1(yi − β̂0 − β̂1xi)

2

n− 2

We can use it to describe the effectiveness of our prediction. If the residual standard deviation
is small then the observations are generally closer to the predicted line, and they are further
away if the residual standard deviation is large.

Residual analysis. The residuals are standardized with their common standard error σ̂. Thus,
the standardized residuals

y1 − ŷ1
σ̂

, . . . ,
yn − ŷn

σ̂
(7.1)

are standardized such that they resemble the normal distribution with mean zero and standard
deviation one if the model assumptions hold. Hence, we check these properties on the stan-
dardized residuals. The normality assumption is usually checked with a QQ-plot: Due to the
standardization, the points should be scattered around the line with intercept zero and slope
one. The assumption of homogeneous standard deviation is usually validated with a residual
plot, where the standardized residuals are plotted against the predicted values.

Model validation based on residuals. A residual plot shows the standardized residuals
(7.1) against the predicted values ŷi’s. The points should be spread randomly in the vertical
direction, without any systematic patterns. In particular,

� points should be roughly equally distributed between positive and negative values in all
parts of the plot (from left to right);

� there should be roughly the same variation in the vertical direction in all parts of the plot
(from left to right);

� there should be no too extreme points.
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Systematic deviations described above correspond to problems with the mean structure, the
variance homogeneity, or the normal distribution, respectively.

Example: Stearic acid and digestibility. Researchers examined the digestibility of fat with
different levels of stearic acid. The average digestibility percent was measured for nine different
levels of stearic acid proportion. Data are shown in the table below, where x represents stearic
acid and y is digestibility measured in percent.

Then predicted value ŷi corresponding to the original observation of xi is obtained by

ŷi = 96.5334− 0.9337xi

where the estimated intercept and slope are calculated by the least squares method.

The residual analysis for the digestibility data is presented below. The left panel shows the
residual plot, and QQ-plot (right) of the standardized residuals is also obtained. The straight
line in the QQ-plot has intercept zero and slope one. In the residual plot we see that the points
are spread out without any clearly visible pattern.

� There seem to be both positive and negative residuals in all parts of the plot (from left to
right; for small, medium, as well as large predicted values). This indicates that the specifi-
cation of the digestibility mean as a linear function of the stearic acid level is appropriate.

� There seems to be roughly the same vertical variation for small, medium, and large pre-
dicted values. This indicates that the standard deviation is the same for all observations
(homoscedasticity, or homogeneity of variance).

� There are neither very small nor very large standardized residuals This indicates that there
are no outliers and that it is not unreasonable to use the normal distribution.

Hypothesis test. In the linear regression model

yi = β0 + β1xi + ei, i = 1, . . . , n,
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the slope parameter β1 measures the linear relationship between xi and yi, and the assumption
of no association between xi and yi is expressed by the null hypothesis

H0 : β1 = 0

Under the null hypothesis (that is, if H0 is true), all yi’s are independently determined without
xi, which implies a simplification of the original linear regression model. Usually the alternative
hypothesis is simply the complement of the null hypothesis

HA : β1 ̸= 0

in the linear regression model.

Example: Stearic acid and digestibility. The hypothesis

H0 : β1 = 0

that there is no relationship between the level of stearic acid and digestibility is tested by the
test statistic

Tobs =
β̂1

SE(β̂1)
=

−0.9337

0.0926
= −10.08

where the estimate β̂1 = −0.9337 and its standard error

SE(β̂1) =
σ̂√
SSx

= 0.0926

are obtained from

SSx =
n∑

i=1

(xi − x̄)2 = 1028.55

The value Tobs = −10.08 of test statistic should be compared to a random variable T from the
t7-distribution. For the alternative hypothesis

HA : β1 ̸= 0

we get the p-value
P (|T | ≥ 10.08) = 0.00002

and we conclude that there is strong evidence of an association between digestibility and the
stearic acid level, and that the slope is significantly different from zero. Since the estimate
−0.9337 of slope is negative, we conclude that the digestibility percentage decreases as the
percentage of stearic acid increases.

R coding: Stearic acid and digestibility. The variable model contains everything we need
to know about the linear regression. Here we have two parameters: the intercept and the slope.
The estimated intercept is found under (Intercept) and the variable stearic.acid.

summary(model)

The most important part of the output from summary() is the coefficients part (roughly in the
middle). Four values are listed for each parameter: (i) The estimate; (ii) the standard error
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for the estimate; (iii) a t-test statistic for the hypothesis that the corresponding parameter is
equal to zero; and (iv) the corresponding p-value. After the coefficients part we find the residual
standard error, the residual degrees of freedom, and a few things that are not of interest at the
moment.

Transformation. We may find the usefulness of the linear regression model in situations where
there appears to be a non-linear relationship between two variables xi and yi. In those situations
a direct application of linear regression model is inappropriate. In some cases, however, we
may be able to remedy the situation by transforming the response variable yi in such a way
that the transformed data shows a linear relationship with the explanatory variable xi. Let
(xi, yi), i = 1, . . . , n, denote our n pairs of observations and assume that a straight line does not
reasonably describe the relationship between xi and yi. By transformation we seek a function
f(y) such that the transformed variables, zi = f(yi), can be modeled as a linear function of the
xi. That is,

zi = β0 + β1xi

This is the case in the following example.

Example: Growth of duckweed. Top panel shows the original duckweed data. Bottom
left shows the data and fitted regression line after logarithmic transformation and bottom right
shows the fitted line transformed back to the original scale.

The population size yi of a species can often be described by an exponential growth model. This
corresponds to a linear regression model with log(yi) as response variable.

Residual plots for the duckweed data. Left panel: linear regression with the leaf counts as
response. Right panel: linear regression with the logarithmic leaf counts as response.

Example: Chlorophyll concentration. An experiment with winter wheat was carried out
in order to investigate if the concentration of nitrogen in the soil can be predicted from the
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concentration of chlorophyll in the plants. This could improve the adjustment of nitrogen
supply. The chlorophyll concentration in the leaves as well as the nitrogen concentration in
the soil were measured for 18 plants. The nitrogen concentration N is plotted against the
chlorophyll concentration C (upper left panel below). The other three panels show residual
plots for three different models, the only difference being the choice of response: Residual plots
for the regression of nitrogen concentration N predicted by chlorophyll content C in the plants
(upper right), for the regression of log(N) on C (lower left), and for the regression of the square
root

√
N on C (lower right).

For the regression with N as response (the upper right plot) there is an indication of a trumpet
shape: the variation seems to be larger for large predicted values compared to small predicted
values. This is quite often the case for biological data, and it can often be remedied by transfor-
mation. The logarithmic transformation log(N) has the property that it squeezes large values
and in that way diminishes the variation for large values. For this particular dataset, however,
it seems like the log-transformation has been too powerful (the lower left plot): there seems to
be larger variation for small predicted values. The square root transformation

√
N is sometimes

a useful compromise between no transformation and the logarithmic transformation, and except
for two large positive residuals, the variation seems to be constant across the different values of
predicted values (the lower right plot).

Standard errors in linear regression. Consider the linear regression model. As already
derived, the least squares estimates for slope and intercept are

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
; β̂0 = ȳ − β̂1x̄

Define SSx and s respectively by

SSx =
n∑

i=1

(xi − x̄)2; s =

√∑n
i=1(yi − β̂0 − β̂1xi)

2

n− 2

The standard errors for the estimates are

SE(β̂1) =
s√
SSx

; SE(β̂0) = s

√
1

n
+

x̄2

SSx
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Confidence interval in linear regression. In general we denote the confidence level (1−α),
such that 95% and 90% confidence intervals corresponds to α = 0.05 and α = 0.10, respectively.
The relevant critical value corresponds to α/2, assigning probability α/2 to the right. Then
(1− α)-confidence interval for parameter βj is of the form

β̂j ± tα/2,n−2SE(β̂j), j = 0, 1,

where n− 2 is the degree of freedom. The (1− α)-confidence interval includes the values of βj

for which it is reasonable, at confidence degree (1−α), to believe that they could have generated
the data. If we repeated the experiment many times then a fraction 1− α of the corresponding
confidence intervals would include the true value βj.

Example: Stearic acid and digestibility. Consider the linear regression model which de-
scribes the association between the level of stearic acid and digestibility.

β̂1 = −0.9337; β̂0 = 96.5334

SSx = 1028.549 and s = 2.970 are used to calculate

SE(β̂1) =
2.970√
1028.549

= 0.0926;

SE(β̂0) = (2.970)

√
1

9
+

(14.5889)2

1028.549
= 1.6752

There are n = 9 observations and two parameters. Thus, we need critical values from the t-
distribution with (n − 2) = 7 degrees of freedom. Since t0.025,7 = 2.365, we compute the 95%
confidence interval by

−0.9337± (2.365)(0.0926) = (−1.15,−0.71);

96.5334± (2.365)(1.6752) = (92.57, 100.49),

for the slope and the intercept parameter β1 and β0. Hence, decrements between 0.71 and 1.15
percentage points of the digestibility per unit increment of stearic acid level are in agreement
with the data on the 95% confidence level.

Confidence interval for expected value. The expected value of prediction at x = x0 is
obtained by the model with the estimates of intercept and the slope:

ŷ0 = β̂0 + β̂1x0

It takes into account the estimation error and thus gives rise to the 95% confidence interval

(β̂0 + β̂1x0)± (t0.025,n−2)s

√
1

n
+

(x0 − x̄)2

SSx

(7.2)

for the expected value y0 = β0 + β1x0.
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Prediction interval. However, y0 is subject to observation error. The observational error
has standard deviation σ, and the prediction interval should take this source of variation into
account, too. Intuitively, this corresponds to adding s to the residual standard error. Hence,
the 95% prediction interval is computed as follows:

(β̂0 + β̂1x0)± (t0.025,n−2)s

√
1 +

1

n
+

(x0 − x̄)2

SSx

The interpretation is that a (new) random observation at x = x0 will belong to this interval
with probability 95%.

Example: Stearic acid and digestibility. If we consider a stearic acid level of x0 = 20%
then we will expect a digestibility percentage of

ŷ0 = 96.5334− (0.9337)(20) = 77.859

which has standard error

SE(ŷ0) = (2.970)

√
1

9
+

(20− 14.5889)2

1028.549
= 1.1096

The 95% confidence interval for y0 is given by

(77.859)± (2.365)(1.1096) = (75.26, 80.48)

In conclusion, the predicted values of digestibility percentage corresponding to a stearic acid
level of 20% between 75.2 and 80.5 are in accordance with the data on the 95% confidence level.

We can calculate the 95% confidence interval for the expected digestibility percentage for other
values of the stearic acid level.

The lower and upper limits are indicated by dotted lines. The width of the confidence band
is smallest when x0 is close to x̄ (interpolation) and becomes larger as x0 moves away from x̄
(extrapolation). This reflects that the confidence is higher within the range of data, as it is also
clear from the formula (7.2).

The plots below display 95% prediction intervals (dashed lines), and 95% confidence intervals
(dotted lines) for the digestibility data.
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The prediction intervals are wider than the confidence intervals. Also notice that the confidence
bands and the prediction bands are not straight lines. The closer x0 is to the mean value, the
more precise the prediction becomes (interpolation).

Confidence and prediction intervals.

� Interpretation. The confidence interval includes the expected values that are in accor-
dance with the data (with a certain degree of confidence), whereas a new observation will
be within the prediction interval with a certain probability.

� Interval widths. The prediction interval is wider than the corresponding confidence
interval.

� Dependence on sample size. The confidence interval can be made as narrow as we
want by increasing the sample size. This is not the case for the prediction interval.

R coding: Stearic acid and digestibility. By using the estimates and standard errors we
can compute confidence intervals. Here we can make R do the computations for us and use the
confint() function.

confint(model)

confint(model, level=0.90)

The output has one line per parameter, with the same names as in the output from summary().
Notice how we may specify the level of the confidence interval and that the 95% interval is
computed if no level is specified.

The predict() function is applicable for computation of predicted values corresponding to the
observations in a dataset. Consider the digestibility data and assume that we wish to predict the
digestibility percent for levels 10, 20, and 25 of stearic acid. The predicted values are calculated
in the linear regression model as follows:

new <- data.frame(stearic.acid=c(10, 20, 25))

new

predict(model, new, level=0.95, interval="confidence")

First, a new data frame with the new values of the explanatory variables is constructed. It has
three observations and a single variable, stearic.acid. It is important that the variable has the
same name as the explanatory variable in the original dataset. The predict() command asks
R to calculate the predicted values. The type of the intervals may be changed with options.
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