
Example: Crab weights.

The weights in grams of 162 crabs at a certain age were recorded as
part of a larger experiment at the Royal Veterinary and Agricultural
University in Denmark. The figure shows a relative frequency
histogram of the observations, together with the graph of the normal
density function.
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Example: Crab weights, continued.

The sample mean and standard deviation are given by

ȳ = 12.76grams, s = 2.25grams

The function

f (y) =
1√

2π(2.25)2
exp

(
− 1

2(2.25)2
(y − 12.76)2

)
is called the density for the normal distribution with mean 12.76 and
standard deviation 2.25. The point is that the curve approximates
the histogram quite well. This means that the function f (y) is a
useful tool for description of the variation of crab weights.

Lecture note #2 Normal Distributions September 6, 2024 2 / 30



Normal density function.

If the sample is not too small, the histogram often looks quite
smooth, and it is natural to approximate it with a smooth curve. The
density for the normal distribution corresponds to a particular type of
such a smooth curve; namely, the curve given by the function

f (y) =
1√
2πσ2

exp

(
− 1

2σ2
(y − µ)2

)
Here, µ and σ > 0 are fixed numbers—the mean and the standard
deviation, respectively. For the crab weight data we used µ = 12.76
and σ = 2.25.
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Normal density function, continued.
The interpretation of the density is similar to that of the histogram.
For an interval (a, b) the area under the curve from a to b is the
probability that a random observation falls within the interval. This is
illustrated in the area of the gray region, and it is interpreted as the
probability that a random observation falls somewhere between a and
b.
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Normal density function, continued.

Mathematically, the area is written as an integral, so the relationship
between the probability and area can be written as

P(a < Y < b) =

∫ b

a

f (y)dy

Here Y represents a random observation, and P(a < Y < b) denotes
the probability that such a random observation has a value between a
and b. The right-hand side represents the area under the density
curve over the interval from a to b. In particular we say that a
variable Y is “normally distributed” (or “Gaussian”) with mean µ
and standard deviation σ. Then we write Y ∼ N(µ, σ2). Notice that
we follow the tradition and use the variance σ2 rather than the
standard deviation σ in the N(µ, σ2) notation.
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Example: Crab weights.

It seems reasonable to describe the variation of crab weights with the
N(12.76, (2.25)2) distribution. Then the probability that a random
crab weighs between 16 and 18 grams is∫ 18

16

1√
2π(2.25)2

exp

(
− 1

2(2.25)2
(y − 12.76)2

)
dy

This is turns out to be 0.065. Ten of the 162 crab weights are
between 16 and 18 grams, corresponding to a relative frequency of
10/162 = 0.062. The relative frequency and the probability computed
in the normal distribution are close if the normal distribution
describes well the variation in the sample, as in this example.
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Normal density function.

Recall that the density f (y) is determined by the parameters µ and
σ2. The following figure shows the density for four different values of
(µ, σ2); namely, the densities for N(0, 1), N(0, 4), N(2, 1), and
N(−2, 0.25). Note that all normal densities are “bell shaped.”
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Properties of normal density functions.

The interpretations of µ and σ as the mean and standard deviation
fit perfectly well with the “center” and “dispersion” interpretations in
the properties below.

Symmetry. f (y) is symmetric around µ, so values below µ are
just as likely as values above µ.

Center. f (y) has maximum value at y = µ, so values close to µ
are the most likely to occur.

Dispersion. The density is “wider” for large values of σ
compared to small values of σ (for fixed µ), so the larger σ the
more likely are observations far from µ.
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Standard normal distribution.

The normal distribution with mean 0 and standard deviation 1,
N(0, 1), is called the standard normal distribution and has the density
function

ϕ(y) =
1√
2π

exp

(
−y 2

2

)
Consider a N(0, 1) distributed variable Z . The probability that a
random observation of Z falls within a certain interval is computed as
the area. The area calculation cannot be solved explicitly, but
certainly numerically. The result is usually denoted Φ(z); that is,

Φ(z) = P(Z ≤ z) =

∫ z

−∞

1√
2π

exp

(
−y 2

2

)
dy

Φ(z) is called the cumulative distribution function (cdf) of Z or
the cumulative distribution function of N(0, 1).
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Standard normal distribution, continued.
The dashed lines in the right graph correspond to z = −1.645 and
z = 1.645.

These values are selected because

Φ(−1.645) = P(Z ≤ −1.645) = 0.05

Φ(1.645) = P(Z ≤ 1.645) = 0.95
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Probability calculations.

Probabilities concerning an N(0, 1)-distributed variable are easily
expressed by

P(a < Z < b) =

∫ b

a

ϕ(y)dy = Φ(b)− Φ(a)

Probabilities regarding an N(µ, σ2)-variable Y can be computed in
the N(0, 1)-distribution, and expressed by

P(a < Y < b) = Φ

(
b − µ

σ

)
− Φ

(
a − µ

σ

)
Generally values Φ(z)’s are looked up in the table of normal
distribution, or computed by a computer program.

Lecture note #2 Normal Distributions September 6, 2024 11 / 30



Example: Crab weights.

Assume that crab weights are normally distributed with mean 12.76
and standard deviation 2.25. Then we get

P(16 < Y < 18) = Φ

(
18− 12.76

2.25

)
− Φ

(
16− 12.76

2.25

)
= Φ(2.33)− Φ(1.44)

= 0.990− 0.925 = 0.065

where the Φ values are looked up in a table or computed with a
computer. If we accept that the crabs in our sample are
representative, we can conclude that there is a 6.5% chance of
observing a weight between 16 and 18 grams for a randomly selected
crab from the population.
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Computing in R: Normal distribution.

In the first command the first argument to pnorm() is the value x to
compute the probability of outcome up to x, and the second and
third arguments denote the mean and the standard deviation (sd),
respectively, in the normal distribution. Note that the third argument
is the standard deviation, not the variance.

pnorm(18,mean=12.76,sd=2.25)-pnorm(16,mean=12.76,sd=2.25)

The default values of the mean and standard deviation are zero and
one, respectively, for the standard normal distribution.

pnorm((18-12.76)/2.25)-pnorm((16-12.76)/2.25)

The results are the same, and computed in different ways.
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Central part of distribution.
We would expect the interval as µ± 1.96σ to contain approximately
95% of the observations. This corresponds to a commonly used
rule-of-thumb that roughly 95% of the observations are within a
distance of 2 times the standard deviation from the mean. Similar
computations are made for other percentages.
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Computing in R: Normal distribution.

Quantiles for the standard normal distribution are computed with the
qnorm() function. For example, the 95% and the 97.5% quantiles
are 1.645 and 1.960.

qnorm(0.95)

qnorm(0.975)

12.76 + qnorm(0.95)*2.25

12.76 + qnorm(0.975)*2.25

Like pnorm(), the function qnorm() can be used for normal
distributions with non-zero mean and non-unit standard deviation
(sd) by supplying the mean and sd as extra arguments. The above
results are computed in different ways.

qnorm(0.95, mean=12.76, sd=2.25)

qnorm(0.975, mean=12.76, sd=2.25)
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Are data normally distributed?
For many applications it is important that the distribution is
approximately a normal distribution, so we must carry out some kind
of model validation. It would only rarely be correct to say that a
certain variable is exactly distributed according to a normal
distribution. If the sample is large enough that it makes sense to
compare the histogram of the observations to the normal density with
mean and standard deviation equal to the sample mean and sample
standard deviation.
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Quantile-quantile plot.
Another relevant plot is the QQ-plot, or quantile-quantile plot,
which compares the sample quantiles to those of the normal
distribution. If data are N(µ, σ2)-distributed, the points in the
QQ-plot should be scattered around the straight line with intercept µ
and slope σ, so we can see whether there are serious deviations from
the straight line relationship or not.
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Construction of QQ-plot.

First we have a sample y1, . . . , yn and that we want to check if the
values could come from a normal distribution. Let y(j) denote the
j-th smallest observation (order statistics) among y1, . . . , yn such that
y(1) < y(2) < · · · < y(n). Each interval between two y(j)’s is ascribed
probability 1/n and the intervals (−∞, y(1)) and (y(n),+∞) are
ascribed probability 1/(2n) each. Let xj be the N(0, 1)-quantile
corresponding to the accumulated probabilities up to y(j); i.e., let xj
be the (j − 0.5)/n-th percentile of N(0, 1). Now, if the yi ’s are
normally distributed, then the ordered statistics y(j)’s and the
quantiles xj ’s should be linear: y(j) ≈ µ+ σxj for all j = 1, . . . , n.
Therefore, if we plot y(j)’s the against xj ’s, the points should be
scattered around the straight line.
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Example: Crab weights.

QQ-plots are easily constructed with the qqnorm() function. Read a
dataset into the data frame “databox” where the variable “wgt”
contain the 162 measurements.

databox = read.csv(file.choose())

attach(databox)

qqnorm(wgt)

The command qqline() function adds the straight line
corresponding to the normal distribution with the same 25% and 75%
quantiles as the sample quantile values.

qqline(wgt)

detach(databox)
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The central limit theorem.

The central limit theorem (CLT) states that the mean of
independent variables drawn from the same distribution is
approximately normally distributed as long as the sample size is large
no matter the distribution of the original variables. If y1, . . . , yn are
independent and identically distributed variables (or, iid for short)
with mean µ and standard deviation σ and n is large enough (usually
larger than 30) then we can approximately observe

ȳ =

∑n
i=1 yi
n

∼ N(µ, σ2/n)

The central limit theorem is quite astonishing: probabilities about an
average can be approximately computed in the normal distribution,
no matter how the original observations are distributed.
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Example: Substance in cow milk.
The concentration of a substance in cow milk is normally distributed
with mean 100 and standard deviation 5 (in some unit) for healthy
cows but normally distributed with mean 40 and standard deviation
10 for cows with a certain disease. A drug can be used for treatment,
which brings back the concentration to the level for healthy cows.
For 10% of diseased cows, however, the drug does not work. The
distribution is clearly bimodal, and it has mean 94, variance 356.5,
and standard deviation 18.9.

milk = data.frame(mean = c(100, 40), sd = c(5, 10))

cow = sample(c(1,2), 2000, replace=T, prob=c(0.9, 0.1))

data = rnorm(2000, mean=milk$mean[cow],

sd=milk$sd[cow])

hist(data, breaks=20, col=’yellow’, freq=F)

x = seq(0, 140, length=100)

lines(x, dnorm(x, mean=94, sd=18.9), type=’l’,

col=’blue’)
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Example: Substance in cow milk.
For the upper right part we simulated sample means of y1, . . . , y5,
n = 5. We repeated this 2000 times and plotted the histogram of the
2000 sample means. In the lower panels we did the same for an
average of 25 and 100 values, respectively.
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Practice problem 1.
1 If z is a standard normal variable, find the probability that z is

less than 1.13.

2 If z is a standard normal variable, find the probability that
z > 0.59.

3 In the standard normal distribution, what value z separates the
rest in the upper 5th percentile?

4 The grades on a chemistry midterm are normally distributed
with a mean of 60 and a standard deviation of 12. Jim scored
42. Find the value z corresponding to Φ(z) in order to
determine the proportion of students who scored lower than Jim.

5 Human body temperatures have a mean of 98.3◦F and a
standard deviation of 0.6◦F. Express the probability that a
patient got his body temperature of 99.5◦F or higher in terms of
Φ(z).
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Answer key.

1 0.871

2 0.278

3 1.645

4 −1.5

5 1− Φ(2)
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Practice problem 2.

1 The graph depicts IQ scores of adults, and those scores are
normally distributed with a mean of 100 and a standard
deviation of 10. Find the area of the shaded region.

2 Assuming a normal distribution with mean µ and standard
deviation σ, express the interval to contain 90% of observations
in terms of µ and σ.

3 Assume that adults have IQ scores that are normally distributed
with a mean of 100 and a standard deviation of 10. Find the
probability that a randomly selected adult has an IQ between 90
and 120.
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Answer key.

1 0.841

2 (µ− 1.645σ, µ+ 1.645σ), or simply write µ± 1.645σ

3 0.818
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Practice problem 3.

Suppose that in 2004, the verbal portion of the Scholastic Aptitude
Test (SAT) had a mean score of µ = 500 and a standard deviation of
σ = 100, while in the same year, the verbal exam from the American
College Testing Program (ACT) had a mean of µ = 21.0 and a
standard deviation of σ = 4.7. Two friends, Mike and Tom, applying
for college took the tests, Mike scoring 650 on the SAT and Tom
scoring 30 on the ACT. Which of these students, Mike or Tom,
scored higher among the population of students taking the relevant
test? Justify your answer.
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Answer key.

Tom taking the ACT test performed better because the probability
1− Φ(1.91) of getting better than Tom is “smaller” than the
probability 1− Φ(1.5) of the same case by Mike.
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Practice problem 4.
1 The scores on the Graduate Management Admission Council’s

GMAT examination are normally distributed with a mean of 530
and a standard deviation of 100. What is the probability of an
individual scoring above 500 on the GMAT?

2 Continue from the previous question, what is the interval on the
GMAT in order to contain 95% of the scores?

3 An unknown distribution has a mean of 90 and a standard
deviation of 20. Samples of size n = 25 are drawn randomly
from the population. Find approximately the probability that the
sample mean is between 85 and 92.

4 The annual precipitation amounts in a certain mountain range
are normally distributed with a mean of 107 inches, and a
standard deviation of 12 inches. (a) What is the standard
deviation of mean annual precipitation during those 36 years?
(b) What is the probability that the mean annual precipitation
during 36 years will exceed 110 inches?
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Answer key.

1 0.618

2 (334, 726)

3 0.586

4 (a) the standard deviation is 2 inches; (b) 0.067.
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