
One sample model.
One sample model has no explanatory variable (although there
could have been one such as sex or age), and it is determined by
population parameters. We then assume that y1, . . . , yn are
independent with

yi ∼ N(µ, σ2), i = 1, . . . , n

All observations are assumed to be sampled from the same
distribution. Equivalently, we may write

yi ∼ µ+ ei i = 1, . . . , n

where e1, . . . , en are independent and N(0, σ2)-distributed. The
parameters are µ and σ2, where µ is the expected value (or
population mean) and σ is the average deviation from this value (or
the population standard deviation).
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Estimate of parameter.

Consider one sample model, and assume that y1, . . . , yn are
independent and distributed as N(µ, σ2). The only parameter of
interest is the common mean µ, which is estimated by

µ̂ = ȳ =

∑n
i=1 yi
n

∼ N(µ, σ2/n)

The estimate µ̂ is unbiased (that is, it “hits” the correct value on
average, if we repeated the experiment many times) and consistent
(that is, it becomes more precise as the sample size increases since
the variance decreases). Furthermore, it has a normal distribution, so
we know how to calculate probability concerning the estimate.
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Standard error (SE).

The estimate σ̂ of standard deviation σ is given by the sample
standard deviation s; i.e., the square root of

s2 =

∑n
i=1(yi − ȳ)2

n − 1

The statistical model results in the estimate µ̂ of parameter. The
standard deviation of the estimate is called the standard error
(SE), and given by

SE (µ̂) = s
√

1/n

The constant
√

1/n depends on the model and the data structure,

but not on the observed data. Thus, the value
√

1/n could be
computed even before the experiment was carried out. In particular,
it decreases when the sample size n increases.
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Example: Crab weights.

For the crab weight data we get the sample mean ȳ and the sample
standard deviation s by

ȳ = 12.76, s = 2.25

Hence, the estimate µ̂ of mean parameter and the estimate σ̂ of
standard deviation become

µ̂ = 12.76, σ̂ = 2.25

And we obtain the standard error of the mean parameter estimate by

SE (µ̂) = (2.25)
√

1/162 = 0.177
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Standardization and test statistic.

Remember that if y1, . . . , yn are independent and
N(µ, σ2)-distributed, then the sample mean is normally distributed by
the central limit theorem. Furthermore, by standardization (the
Z-score) we get

Z =
ȳ − µ

σ/
√
n
∼ N(0, 1)

However, the value of σ is unknown, so we cannot compute the
Z-score. If we replace σ with its estimate s and consider instead

T =
ȳ − µ

s/
√
n

then extra uncertainty is introduced through the estimate s of σ, and
the distribution is changed. T is called a test statistic.
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Distribution of test statistic.
Intuitively we expect the following properties to hold for the
distribution of test statistic

T =
ȳ − µ

s/
√
n
=

√
n(ȳ − µ)

s

Symmetry. The distribution of T is symmetric around zero, so
positive and negative values are equally likely.

Dispersion. Values far from zero are more likely for T than for
Z due to the extra uncertainty. This implies that the interval
should be wider for the probability to be retained at 0.95.

Large samples. When the sample size increases then s is a
more precise estimate of σ, and the distribution of T more
closely resembles the standard normal distribution. In particular,
the distribution of T should approach N(0, 1) as n approaches
infinity.
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Student t distribution.

It can be proven that these properties are indeed true. The
distribution of T is called the t-distribution with n − 1 degrees of
freedom and is denoted by tn−1, so we write

T =

√
n(ȳ − µ)

s
∼ tn−1

The t-distribution is often called Student’s t distribution because the
distribution result was first published in 1908 under the pseudonym
“Student.” The author was a chemist, William S. Gosset, employed
at the Guinness brewery in Dublin. Gosset worked with what we
would today call quality control of the brewing process. Due to time
constraints, small samples of 4 or 6 were used, and Gosset realized
that the normal distribution was not the proper one to use. The
Guinness brewery only let Gosset publish his results under pseudonym.
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Density functions are compared for the t-distribution with r = 1
degree of freedom (solid) and r = 4 degrees of freedom (dashed) as
well as for N(0, 1) (dotted). The probability of an interval is the area
under the density curve, illustrated in the figure below.
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Critical values for t distribution.
The graph below shows the density function of the t10-distribution.
The 95% quantile is 1.812, as illustrated by the gray region which has
area 0.95. The 97.5% quantile is 2.228, illustrated by the dashed
region with area 0.975. These quantiles are called critical values of
level 0.05 and 0.025, respectively. The level α corresponds to the
right tail probability of the (1− α)-quantile, and the critical value of
level α is denoted by tα,r with r degrees of freedom.
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The t distribution table.

The following table shows the 95% and 97.5% quantiles for the
t-distribution for a few selected degrees of freedom, denoted by tr as
illustrated for different degrees r of freedom. Equivalently they
present the critical values t0.05,r of level 0.05 (the top row) and
t0.025,r of level 0.025 (the bottom row). For data analyses where
other degrees of freedom are in order, you should look up the relevant
quantiles/critical values in a statistical table, called the
t-distribution table.
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Confidence interval.

In one sample model let y1, . . . , yn be independent and
N(µ, σ2)-distributed. The estimate of parameters µ and σ2 are given
by

µ̂ = ȳ =

∑n
i=1 yi
n

, σ̂2 = s2 =

∑n
i=1(yi − ȳ)2

n − 1

and hence the standard error of the mean parameter estimate µ̂ is
given by

SE (µ̂) = s
√
1/n

By standardization we obtain

T =
ȳ − µ

s/
√
n
=

µ̂− µ

SE (µ̂)
∼ tn−1
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If we denote the critical value in the t-distribution by tα/2,n−1 then we
get

P

(
−tα/2,n−1 <

µ̂− µ

SE (µ̂)
< tα/2,n−1

)
= 1− α

If we move around terms in order to isolate µ, we can derive

1− α = P
(
− (tα/2,n−1)SE (µ̂) < µ̂− µ < (tα/2,n−1)SE (µ̂)

)
= P

(
µ̂− (tα/2,n−1)SE (µ̂) < µ < µ̂+ (tα/2,n−1)SE (µ̂)

)
Therefore, the interval(

µ̂− (tα/2,n−1)SE (µ̂), µ̂+ (tα/2,n−1)SE (µ̂)
)

includes the true parameter value µ with a probability of (1− α)%.
The interval is called a (1− α)% confidence interval for µ.
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Example: Crab weights.
The interesting parameter for the crabs data is the population mean
µ. Choose (1− α) = 0.95. Then the critical value with level
α/2 = 0.025 in the t-distribution with (n − 1) = 161 degrees of
freedom becomes 1.975. From the estimates and standard error

µ̂ = 12.76, s = 2.25, SE (µ̂) = (2.25)
√
1/162 = 0.177

we compute the 95% confidence interval for µ by

12.76± (1.975)(0.177) = (12.41, 13.11)

If n is large then the critical value will be close to 1.96 and it does
not matter much which of the critical values, 1.975 or 1.96, is used.
Moreover, s will be a precise estimate of σ when n is large, so it will
be almost as if s was known. For small samples there is a difference,
though, and the critical value t0.025,n−1 is more correct to use.
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Find the estimate and the standard error for the variable “wgt.”

databox = read.csv(file.choose())

attach(databox)

est = mean(wgt)

se = sd(wgt) * sqrt(1/length(wgt))

Quantiles for the t-distribution are computed with the qt() function
with degrees of freedom. For example, the 95% and the 97.5%
quantiles with n − 1 degrees of freedom are

qt(0.95, df=length(wgt)-1)

qt(0.975, df=length(wgt)-1)
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The one sample model can be handled with the lm() function,
acknowledging that there is only “one constant” parameter.

model = lm(wgt ~ 1)

summary(model)

confint(model, level=0.90)

confint(model, level=0.95)

Alternatively (and more easily in some cases) we can use the
t.test() function:

t.test(wgt)

t.test(wgt, conf.level=0.90)

A lot of the output is concerned with a certain t-test and will be
explained later, but the estimate and the confidence interval are also
produced. The confidence level can be specified with the option
“conf.level=0.90.”
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Confidence interval in general.
If we repeated the experiment or data collection procedure many
times and computed the interval

µ̂± (t0.025,n−1)SE (µ̂)

then 95% of those intervals would include the true value of µ. We
have drawn 50 samples of size 10 with µ = 0, and for each of these
50 samples we have computed and plotted the confidence interval.
The true value µ = 0 is included in the confidence interval 95% of
the time. The 75% confidence interval for µ is given by

µ̂± (t0.125,n−1)SE (µ̂)

The 75% confidence intervals are more narrow such that the true
value is excluded more often, with a probability of 25% rather than
5%. This reflects that our confidence in the 75% confidence interval
is smaller compared to the 95% confidence interval.
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Confidence intervals for 50 simulated data generated for the true
value µ = 0. Each shows 95% confidence intervals of size n = 10,
75% confidence intervals of size n = 10, and 95% confidence
intervals of size n = 40, respectively.
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Confidence interval in general.

The true value µ is either inside the interval or it is not, but we will
never know. We can, however, interpret the values in the confidence
interval for the mean parameter µ by which it is reasonable to believe
that they could have generated the data. If we use 95% confidence
intervals,

1 the probability of observing data for which the corresponding
confidence interval includes µ is 95%;

2 the probability of observing data for which the corresponding
confidence interval does not include µ is 5%.

As a standard phrase we may say, “the 95% confidence interval
includes those values that are in agreement with the data on the 95%
confidence level.”
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Example: Hormone concentration study.
As part of a larger cattle study, the effect of a particular type of feed
on the concentration of a certain hormone was investigated. Nine
cows were given the feed for a period, and the hormone
concentration was measured initially and at the end of the period.
The purpose of the experiment was to examine if the feed changes
the hormone concentration.

We obtain the sample mean 13.778 and the sample standard
deviation 15.238. Thus, the difference is positive for eight of the nine
cows. But is it strong enough for us to conclude that the feed affects
the concentration?
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Hypothesis test.

Initially, we may examine if the concentrations are generally
increasing or decreasing from the start to the end of the experiment.
The hormone concentration increases for eight of the nine cows, for
some cows quite substantially, for some cows only a little bit. There
is certainly a tendency, but is it strong enough for us to conclude that
the feed affects the concentration? Hypothesis tests are used to
investigate if the observed data contradict or support specific
assumptions. In short, a hypothesis test evaluates how likely the
observed data is if the assumptions under investigation are true. If
the data is very unlikely to occur given the assumptions, then we do
not believe in the assumptions. Hypothesis tests form the core of
statistical inference, together with parameter estimation and
confidence intervals, and involve important new concepts like null
and alternative hypotheses, test statistics, and p-values.
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In many cases, the interest is in identifying certain effects. This
situation corresponds to the alternative hypothesis, whereas the
null hypothesis corresponds to the situation of “no effect” or “no
association.” This may all seem a little counterintuitive, but the
machinery works like this: with a hypothesis test we reject null
hypothesis if the data and the hypothesis are in contradiction; that
is, if the model under the null hypothesis fits poorly to the data.
Hence, if we reject the null hypothesis then we believe in the
alternative, which states that there is an effect. In principle we
never accept the null hypothesis. If we fail to reject the null
hypothesis we say that the data does not provide evidence against it.
This is not a proof that the null hypothesis is true, but it only
indicates that the model under the alternative hypothesis does not
describe the data significantly better than the one under the null
hypothesis.
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Example: Hormone concentration study.

We consider the differences of hormone concentration, denoted by
d1, . . . , d9, during the period and assume that they are independent.
Then µ is the expected change in hormone concentration for a
random cow, or the average change in the population, and µ = 0
corresponds to no effect of the feed on the hormone concentration.
The mean of the nine differences is 13.78, and we would like to know
if this reflects a real effect or if it might be due to chance. Here we
are interested in the null hypothesis

H0 : µ = 0

corresponding to “no difference” between start and end
measurements in the population.
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Example: Hormone concentration study.

Now, the average difference 13.78 is our best “guess” for µ, so it
seems reasonable to believe in the null hypothesis if it is “close to
zero” and not believe in the null hypothesis if it is “far away from
zero.” So we might ask: If µ is really zero (if the hypothesis is true),
then how likely is it to get an estimate that is as far or even further
away from zero than the 13.78 that we actually got? A t-test can
answer that question. We can calculate the test statistic by

Tobs =
µ̂− 0

SE (µ̂)
=

13.78

5.08
= 2.71

The numerator is just the difference between the estimate µ̂ and the
value of µ if the null hypothesis H0 is true. We then divide it by the
standard error

SE (µ̂) = (15.24)
√

1/9 = 5.08
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Mechanism of rejection.
If µ = 0 (the null hypothesis H0 is true) then Tobs is an observation
from the t8 distribution (the number of degrees of freedom is n − 1;
here 9− 1 = 8). In particular, we can compute the probability of
getting a test statistic T which is at least as extreme as 2.71 by

P(|T | ≥ 2.71) = (2)P(T ≥ 2.71) = (2)(0.013) = 0.026

Here T is a t8-distributed random variable and the second equality
follows from the symmetry of the t-distribution. This probability is
called the p-value. If the p-value is small then the observed value
Tobs = 2.71 is extreme, so we do not believe in the null hypothesis
H0 and reject it. If, on the other hand, the p-value is large then the
observed value Tobs = 2.71 is quite likely, so we cannot reject the
hypothesis. In this case the p-value is only 2.6%, so the observed test
statistic of 2.71 is unlikely if the true value of µ is zero. Hence, we
reject the null hypothesis.
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Usually we use a significance level of 5%; that is, we reject the
hypothesis if the p-value is less than 0.05 and fail to reject it
otherwise. This means that the null hypothesis is rejected if |Tobs| is
larger than or equal to the critical value t0.025,n−1 with level 0.025,
which is 2.31 in this case. Hence, an observed test statistic Tobs
outside (−2.31, 2.31) leads to rejection of the null hypothesis.
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Example: Hormone concentration study.

We already used the t.test() function for computation of estimates
and confidence intervals for one sample model. As the name
suggests, the function also carries out complete t-tests.

databox = read.csv(file.choose())

attach(databox)

t.test(difference)

We recognize the estimate, the confidence interval, the t-test
statistic, and the p-value from the example. Notice that the default
“alternative” hypothesis is that the true mean is not equal to zero. If
we are interested in the alternative hypothesis that the mean is
greater than zero, then we need to specify it in the call to t.test().

t.test(difference, alternative="greater")
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Concepts of hypothesis test.

Null hypothesis. A null hypothesis is a simplification of the
statistical model and is as such always related to the statistical
model. Hence, no null hypothesis exists without a corresponding
statistical model. A null hypothesis typically describes the
situation of “no effect” or “no relationship,” such that rejection
of the null hypothesis corresponds to evidence of an effect or
relationship.

Alternative hypothesis. There is a corresponding alternative
hypothesis to every null hypothesis. The alternative hypothesis
describes what is true if the null hypothesis is false. Usually the
alternative hypothesis is simply the complement of the null
hypothesis, called two-sided. If the alternative is one-sided
then the one side of values expressed in the alternative is
considered as evidence against the null hypothesis.
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Test statistic. A test statistic is a function of the data that
measures the discrepancy between the data and the null
hypothesis—with certain values contradicting the hypothesis and
others supporting it. Values contradicting the hypothesis are
called critical or extreme.

p-value. The test statistic is translated to a p-value: the
probability of observing data which fit as bad or even worse than
the observed data if the null hypothesis is true. A small p-value
indicates that the observed data are unusual if the null
hypothesis is true, hence that the hypothesis is false.
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Rejection. The hypothesis is rejected if the p-value is small;
namely, below (or equal to) the significance level, which is
often taken to be 0.05. With statistics we can at best reject the
null hypothesis with strong certainty, but we can never confirm
the hypothesis. If we fail to reject the null hypothesis, then the
only valid conclusion is that the data do not contradict the null
hypothesis. A large p-value shows that the data are in fine
accordance with the null hypothesis, but not that it is true.

Quantification of effects. Having established a significant
effect by a hypothesis test, it is of great importance to quantify
the effect. For example, how much larger is the expected
hormone concentration after a period of treatment? Moreover,
what is the precision of the estimates in terms of standard errors
and/or confidence intervals?
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t-test in general.

Consider the null hypothesis

H0 : µ = µ0

with a null value µ0. Data for which the estimate µ̂ is close to µ0

support the null hypothesis H0, whereas data for which the estimate
µ̂ is far from µ0 contradict the null hypothesis; so it seems reasonable
to consider the deviation.

Tobs =
µ̂− µ0

SE (µ̂)

can be used as a test statistic. An extreme value of Tobs is an
indication that the data are unusual under the null hypothesis, and
the p-value measures how extreme Tobs is compared to the
tn−1-distribution.
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If the alternative is two-sided, HA : µ ̸= µ0, then values of Tobs that
are far from zero (both small and large values) are critical. Therefore,
the p-value is

P(|T | ≥ |Tobs|) = (2)P(T ≥ Tobs)

where T follows the tn−1-distribution. If the alternative is one-sided,
HA : µ > µ0, then large values of Tobs are critical, whereas negative
values of Tobs are considered in favor of the null hypothesis rather
than evidence against it. Hence the p-value is P(T ≥ Tobs).
Similarly if the alternative is one-sided, HA : µ < µ0, then only small
values of Tobs are critical, so the p-value is P(T ≤ Tobs). The
significance level is usually denoted α, and it should be selected
before the analysis. Tests are often carried out on the 5% level
corresponding to α = 0.05 (but α = 0.01 and α = 0.10 are not
unusual).
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Critical region.

For a hypothesis with a two-sided alternative, the hypothesis is thus
rejected on the 5% significance level if |Tobs| is numerically larger
than or equal to the critical value with level 0.025 in the
tn−1-distribution; that is, if |Tobs| ≥ t0.025,n−1. With a one-sided
alternative, HA : µ > µ0, the null hypothesis H0 is rejected if
Tobs ≥ t0.05,n−1. Otherwise, we fail to reject the hypothesis, and the
model under the alternative hypothesis does not describe the data
significantly better than the model under the null hypothesis.
Similarly with the choice of one-sided alternative HA : µ < µ0, the
null hypothesis H0 is rejected if Tobs ≤ −t0.05,n−1. In order to
evaluate if the null hypothesis should be rejected or not, it is thus
enough to compare Tobs or |Tobs| to a certain critical value. But we
recommend that the p-value is always reported.
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Example: Production control.

A dairy company bought a new machine for filling milk into cartons
and wants to make sure that the machine is calibrated correctly. The
aim is an average weight of 1070 grams per carton (including the
carton). A sample of 100 cartons with milk is chosen at random from
the production line and each carton is weighed. It is assumed that
the weights are independent and N(µ, σ2)-distributed. The relevant
hypothesis is H0 : µ = 1070. It turned out that

ȳ = 1072.9grams, s = 15.8grams,

and therefore, that SE (µ̂) = 1.58 and the t-test statistic becomes

Tobs =
µ̂− 1070

SE (µ̂)
=

2.9

1.58
= 1.83
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The corresponding p-value is

P(|T | ≥ 1.83) = (2)P(T ≥ 1.83) = 0.07

where T follows t99-distribution. Thus, we fail to reject the
hypothesis on the 5% significance level, but due to the low p-value
we conclude nevertheless that there is a slight indication that the
machine is calibrated incorrectly. Thus, the result has some
significance since p-value is between 0.05 and 0.1.
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Type I and type II errors.
Four scenarios are possible as we carry out a hypothesis test: the null
hypothesis is either true or false, and it is either rejected or not
rejected. The conclusion is correct whenever we reject a false
hypothesis or do not reject a true hypothesis. Rejection of a true
hypothesis is called a type I error, whereas a type II error refers to
not rejecting a false hypothesis; see the chart below.

We use a 5% significance level. Then we reject the hypothesis if
p-value ≤ 0.05. This means that if the hypothesis is true, then we
will reject it with a probability of 5%. In other words: The probability
of committing a type I error is the significance level α = 0.05.
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The situation is analogous to the situation of a medical test: Assume
for example that the concentration of some substance in the blood is
measured in order to detect cancer. (Thus, the claim is that the
patient has cancer, and the null hypothesis is that he or she is
cancer-free.) If the concentration is larger than a certain threshold,
then the “alarm goes off” and the patient is sent for further
investigation. (That is, to reject the null hypothesis, and conclude
that the patient has cancer.) But how large should the threshold be?
If it is large, then some patients will not be classified as sick (failed to
reject the null hypothesis) although they are sick due to cancer (type
II error). On the other hand, if the threshold is low, then patients will
be classified as sick (reject the null hypothesis) although they are not
(type I error).
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For a general significance level α, the probability of committing a
type I error is α. Hence, by adjusting the significance level we can
change the probability β of rejecting a true hypothesis. This is not
for free, however. If we decrease α we make it harder to reject a
hypothesis. Hence we will accept more false hypotheses, so the rate
of type II errors will increase. The probability that a false hypothesis
is rejected is called the power of the test, and it is given by (1− β).
We would like the test to have large power (1− β) and at the same
time a small significance level α, but these two goals contradict each
other so there is a trade-off. As mentioned already, α = 0.05 is the
typical choice. Sometimes, however, the scientist wants to “make
sure” that false hypotheses are really detected; then α can be
increased to 0.10, say. On the other hand, it is sometimes more
important to “make sure” that rejection expresses real effects; then α
can be decreased to 0.01.
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t-tests and confidence intervals.

The null hypothesis H0 : µ = µ0 is rejected on significance level α
against the alternative HA : µ ̸= µ0 if and only if the null value µ0 is
not included in the (1− α)% confidence interval. This relationship
explains the formulation about confidence intervals; namely, that a
confidence interval includes the values that are in accordance with
the data. This now has a precise meaning in terms of hypothesis
tests. If the only aim of the analysis is to conclude whether a
hypothesis should be rejected or not at a certain level α, then we get
that information from either the t-test or the confidence interval. On
the other hand, they provide extra information on slightly different
matters. The t-test provides a p-value explaining how extreme the
observed data are if the hypothesis is true, whereas the confidence
interval gives us the values of µ that are in agreement with the data.
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Example: Heart rate reductions.

A researcher is interested in how a new class of drug treating a
patient actually affects the patient’s heart rate reduction. The pairs
of heart rate reduction of 40 participants under the standard drug
and after taking the new drug are measured. The data set of heart
rate reductions is prepared in a text file format.

databox <- read.csv(file.choose(), header=T)

attach(databox)

The paired sample test can be done by the t.test() command with
the option “paired=T.” Suppose that we want to test whether the
true means of heart rate reductions with the new drug are higher.
Then the t.test command can be used as follows.

t.test(StdDrug, NewDrug, alternative="less", paired=T)
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